• Title/Summary/Keyword: optimal storage

Search Result 1,123, Processing Time 0.028 seconds

A Converging Exact Algorithm for Determining an Optimal 3-Class-Based Dedicated Linear Storage System

  • Yang Moon-Hee
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.79-94
    • /
    • 2006
  • In this paper, we readdress a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated linear storage layout in a class of unit load storage systems. Based on some fundamental properties derived, we provide a converging exact algorithm with O(n[logn]), which is more efficient than that of Yang and Kim [8] and can be applied to PTL[K] with $K{\ge}4$ in order to reduce computational execution time. In addition, we prove that the necessary condition suggested by them is also a sufficient condition to PTL[3].

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (II) -Model Development- (기상예보를 고려한 관개용 저수지의 최적 조작 모형(II) -모형의 구성-)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.44-55
    • /
    • 1994
  • This paper describes the development of real-time irrigation reservoir operation models that adequately allocate available water resources for paddy rice irrigation. Water requirement deficiency index(WRDI) was proposed as a guide to evaluate the operational performance of release schemes by comparing accumulated differences between daily release requirements for irrigated areas and actual release amounts. Seven reservoir release rules were developed, which are constant release rate method (CRR), mean storage curve method(MSC), frequency analysis method of reservoir storage rate(FAS), storage requirement curve method(SRC), constant optimal storage rate method (COS), ten-day optimal storage rate method(TOS), and release optimization method(ROM). Long-term forecasting reservoir operation model(LFROM) was formulated to find an optimal release scheme which minimizes WRDIs with long-term weather generation. Rainfall sequences, rainfall amount, and evaporation amount throughout the growing season were to be forecasted and the results used as an input for the model. And short-term forecasting reservoir operation model(SFROM) was developed to find an optimal release scheme which minimizes WRDIs with short-term weather forecasts. The model uses rainfall sequences forecasted by the weather service, and uses rainfall and evaporation amounts generated according to rainfall sequences.

  • PDF

Optimal design of batch-storage serial trains considering setup and inventory holding cost (준비비와 재고비를 고려한 직렬 비연속 공정과 중간 저장조의 최적설계)

  • Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-405
    • /
    • 1997
  • This article presents a new model which is called Periodic Square-Wave(PSW) to describe the material flow of the periodic processes involving intermediate buffer. The material flows incoming into and outgoing from the intermediate buffer are assumed to be periodic square shaped. PSW model gives the same result as that of Economic Production Quantity(EPQ) model for determining optimal lot size of single stage batch storage system. However, for batch storage serial train system, PSW model gives a different optimal solution of about 6 % reduced total cost. PSW model provides the more accurate information on inventory and production system than the classical approach by maintaining simplicity and increasing computational burden.

  • PDF

Optimal Scheduling for Dynamic Ice Storage System with Perfectly Predicted Cooling Loads (동적제빙형 빙축열시스템에 대한 최적운전계획)

  • Lee, Kyoung-Ho;Lee, Sang-Ryoul;Choi, Byoung-Youn;Kwon, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.286-291
    • /
    • 2001
  • This paper describes an optimal scheduling for ice slurry systems for energy cost saving. The optimization technique applied in the study is the dynamic programming method, for which the state variable is the storage in the ice storage tank and the control variable is the state of chiller's on-off switching. Though the costs during charge period is included in optimization by taking the average cost of ice per hour for slurry making, the time horizon for the simulation is limited building cooling period because accurate charge rate from the ice maker into the ice storage tank cannot be estimated during the charge period. In the operating simulation after optimizing procedure, energy consumption and operating cost for the optimal control are calculated and compared with them for a conventional control with one case of cooling load profile.

  • PDF

Development of the Optimal Reservoir Storage Determination Model for Supplying Rural Water (농업용 저수지 설계를 위한 저수량 최적화 모형의 개발)

  • 정하우;박태선;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.69-80
    • /
    • 1998
  • The optimal reservoir storage capacity is needed to be determined at the stage of reservoir planning. The reservoir storage capacity should be based on water balance between demand and supply, and meet the water deficity during the growing season. However, the optimal reservoir storage capacity should be determined considering benefit-cost analysis for the project. In this study, Two models are developed. The one is the RSOM(Reservoir Storage Optimization Model), that is consisted by three submodels, MROPER (Modified Reservoir OPERation model), RESICO(REservoir SIze and the construction COst computation) model. And the other is the BECA(BEnefit-Cost Anaysis) model. For model application, three districts, Chungha, Ipsil and Edong were selected. The relative difference of B/C ratio between project planning data and estimation by RSOM is 17.9, 15.0 and 7.3% respectively, which may be applicable for water resources development feasibility planning.

  • PDF

Optimal Heterogeneous Distributed Storage Regenerating Code at Minimum Remote-Repair Bandwidth Regenerating Point

  • Xu, Jian;Cao, Yewen;Wang, Deqiang;Wu, Changlei;Yang, Guang
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.529-539
    • /
    • 2016
  • Recently, a product-matrix (PM) framework was proposed to construct optimal regenerating codes for homogeneous distributed storage systems (DSSs). In this paper, we propose an extended PM (EPM) framework for coding of heterogeneous DSSs having different repair bandwidths but identical storage capacities. Based on the EPM framework, an explicit construction of minimum remote-repair bandwidth regenerating (MRBR) codes is presented for a specific heterogeneous DSS, where two geographically different datacenters with associated storage nodes are deployed. The data reconstruction and regeneration properties of the MRBR code are proved strictly. For the purpose of demonstration, an example implementation of MRBR code is provided. The presented MRBR code is the first optimal strict-regenerating code for heterogeneous DSSs. In addition, our proposed EPM framework can be applied to homogeneous systems also.

Calculating the Optimal Capacity of Battery Storage System for Power System in Je-Ju (제주지역 전력계통에 설치되는 배터리 저장장치의 최적용량 산정)

  • Lee, Jong-Hyun;Nam, Young-Woo;Ko, Won-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.8-14
    • /
    • 2010
  • In this Paper, optimal capacity of battery storage in Je-Ju is calculated. First, Electricity demand data of Je-Ju('06~'16) is estimated based on real electricity demand data of Je-Ju('06~'07). Then, the 4th power supply planning is used to calculate benefits from battery storage capacity in view of maximum power savings, preventing outages savings and energy charge fee reduction. Finally, optimal battery storage capacity is suggested.

Calculating the Optimal Capacity of Energy Storage System to Reduce CO2 Emission for Power System in Je-Ju (제주지역 전력계통에 설치되는 에너지 저장장치의 용량별 CO2 절감량 및 최적용량 산정)

  • Lee, Jong-Hyun;Seol, So-Yeong;Ko, Won-Suk;Choi, Jung-In;Bae, Si-Hwa;Hong, Jun-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1232-1236
    • /
    • 2010
  • In this Paper, optimal capacity of energy storage and amount of $CO_2$ reduction in Jeju is calculated. Based on electricity demand data of Je-Ju from 2006 to 2007, the estimation electricity demand from 2009 to 2018 is performed. To calculate the amount of maximum $CO_2$ reduction and energy storage capacity in Jeju, the 4th power supply planning and IPCC guideline are used. Finally, Optimal capacity of energy storage and the amount of $CO_2$ reduction are showed.

Optimal Scheduling of Ice Storage System with Prediction of Cooling Loads (예측 냉방부하를 이용한 빙축열시스템의 최적 운전계획)

  • 이경호;최병윤;주용진;이상렬;한승호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.982-993
    • /
    • 2000
  • This paper describes an optimal control scheduling of an encapsulated ice storage system with a chiller of nominal chiller 34RT(103,200kcal/hr) and an ice storage tank of 170RT-hrs(514,080 kcal). The optimization technique used in the study is dynamic programing. The objective function is summed cost during a day including charge and discharge periods. Control strategies being used commercially are chiller priority and storage priority control. In chiller priority control, the chiller is allowed to run at full capacity during the day, subject to limitations of the building load, and the ice is only melted when and if the load exceeds the chillers full capacity. In contrast to chiller priority control, the aim in storage priority control is to melt as much as ice as possible during the day time period. The system simulation calculates the operation costs for the three control strategies in the condition of the same cooling load and the same ice storage system. The simulation period is a day, assuming that initially the tank is stored fully and the cooling load is perfectly predicted for the scheduling. Also Final state of the tank is to be charged fully.

  • PDF