• 제목/요약/키워드: optimal stiffness distribution

검색결과 49건 처리시간 0.03초

초고속 원심분리기 복합재 로터의 해석 및 최적설계 (Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis)

  • 박종권;김영호;하성규
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF

균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구 (A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • 제27권5호
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 부하지지 특성에 관한 연구 (A Study on the Loading Capacity According to the Source Positions in Externally Pressurized Air Journal Bearing with Two Row Sources)

  • 이종열;성승학;이득우
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.365-372
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구 (The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor)

  • 심재준;한근조;한동섭;이성욱;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

A Study on Hydrodynamic Coefficient Characteristics of Air Bearing for High Speed Journal

  • Lee, Jong-Ryul;Lee, Deug-Woo;Soeng, Sueng-Hak;Lee, Yong-Chul
    • KSTLE International Journal
    • /
    • 제4권2호
    • /
    • pp.66-72
    • /
    • 2003
  • This paper presents the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existing investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal choices of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high-speed spindle. In this paper, The pressure behavior in theory of air film in high speed region of journal according to the eccentricity of journal and the source positions analyzed. The theoretical analysis has been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high-speed milling.

2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 동적계수에 관한 실험적 연구 (An Experimental Study on the Dynamic Coefficient According to the Source Positions in Externally Pressurized Air-lubricated Journal Bearing with Two Row Sources)

  • 이종렬;이준석;성승학;이득우
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.476-481
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The theoretical analysis have been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구 (A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources)

  • 이종렬;이준석;성승학;이득우
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

아이소-지오메트릭 형상 최적설계의 실험적 검증 (Experimental Validation of Isogeometric Optimal Design)

  • 최명진;윤민호;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.345-352
    • /
    • 2014
  • 본 논문에서는 아이소-지오메트릭 형상 최적설계 기법에서 얻은 CAD 정보를 직접 활용하여, 3D 프린터를 활용한 실험적 검증을 위한 시편을 제작하였다. 유한요소법에서는 요소망에 내재하는 기하학적인 근사가 응답과 설계민감도 해석에서 정밀도 문제를 발생시킨다. 더욱이 유한요소 기반 형상 최적화 과정에서는 CAD와의 정보교환이 필수적이나 그 과정에서 최적설계 정보의 손실이 발생할 수 있다. 아이소-지오메트릭 기법은 CAD에서 사용된 동일한 NURBS 기저함수와 조정점을 사용하므로 법선벡터와 곡률과 같은 엄밀한 기하학적 정보를 응답해석과 설계민감도 해석에 사용할 수 있다. 또한 최적설계 과정에서 CAD와 정보교환 없이 복잡한 형상을 손쉽게 변경할 수 있다. 그러므로 최적의 설계의 재료량을 실험적 검증을 위한 시편제작에 엄밀하게 반영할 수 있다. 굽힘 하중을 받는 단순지지 구조물에 대한 최적설계 및 실험적 검증을 통해 최적형상이 초기 형상에 비해 더 큰 강성을 가지며 실험결과와 수치 해석결과가 매우 잘 일치함을 보였다. 또한 인장력을 받는 유공판에 대한 형상 최적설계를 수행하였으며, 비접촉식 3차원 변형 측정 장치를 이용하여 초기설계에 비해 최적설계에서 구멍주변에서의 응력집중 현상이 완화됨을 확인하였다. 따라서 수치적인 방법을 활용한 최적설계가 실제 구조물에 대한 실험에서도 유효함을 입증하였다고 할 수 있다. 또한, 아이소-지오메트릭 최적설계 방법론이 기존의 유한요소법에 비해서 최적설계 결과를 제작하여 활용하는데 있어서도 훨씬 효율적이고 엄밀한 방법임을 보였다.