• 제목/요약/키워드: optimal return function

Search Result 34, Processing Time 0.023 seconds

Parallel Venovenous and Venoarterial Extracorporeal Membrane Oxygenation for Respiratory Failure and Cardiac Dysfunction in a Patient with Coronavirus Disease 2019: A Case Report

  • Eun Seok Ka;June Lee;Seha Ahn;Yong Han Kim
    • Journal of Chest Surgery
    • /
    • v.57 no.2
    • /
    • pp.225-229
    • /
    • 2024
  • Venovenous (VV) extracorporeal membrane oxygenation (ECMO) is a lifesaving technique for patients experiencing respiratory failure. When VV ECMO fails to provide adequate support despite optimal settings, alternative strategies may be employed. One option is to add another venous cannula to increase venous drainage, while another is to insert an additional arterial return cannula to assist cardiac function. Alternatively, a separate ECMO circuit can be implemented to function in parallel with the existing circuit. We present a case in which the parallel ECMO method was used in a 63-year-old man with respiratory failure due to coronavirus disease 2019, combined with cardiac dysfunction. We installed an additional venoarterial ECMO circuit alongside the existing VV ECMO circuit and successfully weaned the patient from both types of ECMO. In this report, we share our experience and discuss this method.

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.

Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility- (생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구-)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

An Optimal Operation of Multi-Reservoirs for Flood Control by Incremental DP (Incremental DP에 의한 홍수시 댐군의 연계운영)

  • Lee, Jae-Hyeong;Lee, Gil-Seong;Jeong, Dong-Guk
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.47-60
    • /
    • 1992
  • An optimal operation model for flood control of multi-reservoirs, Hwacheon and Soyanggang, located in the north Han River basin is developed by using the Incremental DP. The objective function is to minimize the peak flow at the confluence point, of Euam dam, and the hydraulic and hydrologic constraints are established by considering the related laws as to the operation of dam in flood season, each reservoir and channel characteristics. In particular, the final elevations of each reservoir are induced to the conservation pool level in order to prepare for the secondary flood. In addition, the results of this model, simulation results and the single reservoir operation by DP are compared in terms of control and utility efficiencies, and also the peak flows at the confluence point for floods with various return periods are compared with the results of simulation suing feedback control. as the results, the control and utility effciencies are more or less low in contrast with the results of simulation and the single reservoir operation by DP, and the peak flows at confluence point are high because of terminal condition of reservoir storage.

  • PDF

Network Attack and Defense Game Theory Based on Bayes-Nash Equilibrium

  • Liu, Liang;Huang, Cheng;Fang, Yong;Wang, Zhenxue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5260-5275
    • /
    • 2019
  • In the process of constructing the traditional offensive and defensive game theory model, these are some shortages for considering the dynamic change of security risk problem. By analysing the critical indicators of the incomplete information game theory model, incomplete information attack and defense game theory model and the mathematical engineering method for solving Bayes-Nash equilibrium, the risk-averse income function for information assets is summarized as the problem of maximising the return of the equilibrium point. To obtain the functional relationship between the optimal strategy combination of the offense and defense and the information asset security probability and risk probability. At the same time, the offensive and defensive examples are used to visually analyse and demonstrate the incomplete information game and the Harsanyi conversion method. First, the incomplete information game and the Harsanyi conversion problem is discussed through the attack and defense examples and using the game tree. Then the strategy expression of incomplete information static game and the engineering mathematics method of Bayes-Nash equilibrium are given. After that, it focuses on the offensive and defensive game problem of unsafe information network based on risk aversion. The problem of attack and defense is obtained by the issue of maximizing utility, and then the Bayes-Nash equilibrium of offense and defense game is carried out around the security risk of assets. Finally, the application model in network security penetration and defense is analyzed by designing a simulation example of attack and defense penetration. The analysis results show that the constructed income function model is feasible and practical.

3-stage Portfolio Selection Ensemble Learning based on Evolutionary Algorithm for Sparse Enhanced Index Tracking (부분복제 지수 상향 추종을 위한 진화 알고리즘 기반 3단계 포트폴리오 선택 앙상블 학습)

  • Yoon, Dong Jin;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2021
  • Enhanced index tracking is a problem of optimizing the objective function to generate returns above the index based on the index tracking that follows the market return. In order to avoid problems such as large transaction costs and illiquidity, we used a method of constructing a portfolio by selecting only some of the stocks included in the index. Commonly used enhanced index tracking methods tried to find the optimal portfolio with only one objective function in all tested periods, but it is almost impossible to find the ultimate strategy that always works well in the volatile financial market. In addition, it is important to improve generalization performance beyond optimizing the objective function for training data due to the nature of the financial market, where statistical characteristics change significantly over time, but existing methods have a limitation in that there is no direct discussion for this. In order to solve these problems, this paper proposes ensemble learning that composes a portfolio by combining several objective functions and a 3-stage portfolio selection algorithm that can select a portfolio by applying criteria other than the objective function to the training data. The proposed method in an experiment using the S&P500 index shows Sharpe ratio that is 27% higher than the index and the existing methods, showing that the 3-stage portfolio selection algorithm and ensemble learning are effective in selecting an enhanced index portfolio.

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.

Natural Scene Text Binarization using Tensor Voting and Markov Random Field (텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화)

  • Choi, Hyun Su;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • In this paper, we propose a method for detecting the number of clusters. This method can improve the performance of a gaussian mixture model function in conventional markov random field method by using the tensor voting. The key point of the proposed method is that extracts the number of the center through the continuity of saliency map of the input data of the tensor voting token. At first, we separate the foreground and background region candidate in a given natural images. After that, we extract the appropriate cluster number for each separate candidate regions by applying the tensor voting. We can make accurate modeling a gaussian mixture model by using a detected number of cluster. We can return the result of natural binary text image by calculating the unary term and the pairwise term of markov random field. After the experiment, we can confirm that the proposed method returns the optimal cluster number and text binarization results are improved.

The Study on the Economic Appraisal of Fishing Port Investments (어항투자사업의 경제성 평가에 관한 연구)

  • 정형찬
    • The Journal of Fisheries Business Administration
    • /
    • v.14 no.2
    • /
    • pp.15-68
    • /
    • 1983
  • From the economic point of view the fishing port is the complex of installations on land, organized to serve the fishing fleet and its cargo, and is the main link in the production chain of all components of the fishing industry, with the aim of achieving the planned targets with the minimum cost. Fishing port investment decisions have had significant impact on the development aims of Korean fisheries. Fishing port investments in Korea are made mostly by public or semipublic port authorities. Such investments should be judged not purely on the basis of financial profitability but rather on the extent to which they serve the development aims of the fishing industry. This makes the economic appraisal process more complex and presents certain problems in correctly quantifying the economic costs and benefits of the fishing port projects. This study concentrates more on the theoretical economic appraisal models than on the purely financial aspects of fishing port investments and points out the difference between the two approaches. In the result, there is clearly an element of judgment as to whether or not a shadow price needs to be used in estimating economic benefits and costs. From this viewpoint, some attempts are made to provide definitions of the possible economic benefits and costs, and methods for estimating and evaluating them in Part III and IV. Especially queueing theory is applied in the calculation of economic benefits. When a project is contemplated and analysis shows it to Lave a positive NPV, one question that arises is whether it should be implemented now or delayed. In this paper, the first year rate of return method is regarded as a more concise way of solving the timing of investment, At the end of Part IV, risk analysis of fishing port investments is considered. It can be handled in a number of ways, ranging from informal judgment to complex statistical analyses involving large-scale computer models, This paper recommends that evaluators of fishing port investments use the sensitivity analysis indicating exactly how much NPV will change in response to a given change in an input variable, other things held constant. Decisions regarding the amount of capacity to provide must be made in fishing port investments. Providing too much service would involve excessive capital costs. On the other hand, not providing enough service capacity would cause the waiting line of fishing vessels to become excessively long at times. Therefore, in Part V, the optimal number of berths and berth productivity in fishing port are defined as follows: Minimize E(TC) = E(WC)+E(SC) The minimum of this function is the solution and that is the optimal number of berth and berth productivity in fishing port.

  • PDF