• Title/Summary/Keyword: optimal positions

Search Result 384, Processing Time 0.02 seconds

Analysis of the Cutting Shape as a Function of Feed Rate and Cutting Speed of Korean and Japanese Combines

  • Jin, Byung-Ok;Lee, Min-Ho;Jo, Jin-Seok;Jung, Ho-Jun;Kim, Chi-Ho;Kim, Hyeon-Tae
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Purpose: In this study, we attempted to analyze, by using a high-speed camera, the cutting shape as a function of cutting speed and feed rate. We compared the differences in cutting shape between domestic and foreign combines. Methods: Experiments were performed using plastic straws, and the results of two combine cutting blades, one from the Daedong Industry and one from Kuboda, were compared. The quality and performances of cutting were measured at three cutting positions: center and 68 cm to the left and right of the center. The feed rates were 0.6 m/s, 1.1 m/s, 1.6 m/s, and the cutting speeds were 600 RPM, 990 RPM, 1,380 RPM. For each speed, the cutting shape was measured three times, and the entire procedure was also repeated three times. Results: In the experiments, the domestic cutting blade achieved better results than the Japanese cutting blade. These results were obtained by studying the combination of feed rate and cutting speed, with the domestic combine attaining approximately 80% performance of the Japanese combine. We believe that additional data analysis is required, obtained from field experiments. Conclusions: The domestic cutting knives achieved better results than the Japanese cutting knives. These results are estimated from experiments conducted with different feed rates and cutting speeds; an in-depth analysis will require experiments in the real field with actual combines and a combination of multiple variables. Repeating the investigation on the length differences, broken and cut angle with various combinations of feed rate and cutting speed, will surely help to find the optimal cutting speed.

Optimization of Material Properties for Coherent Behavior across Multi-resolution Cloth Models

  • Sung, Nak-Jun;Transue, Shane;Kim, Minsang;Choi, Yoo-Joo;Choi, Min-Hyung;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4072-4089
    • /
    • 2018
  • This paper introduces a scheme for optimizing the material properties of mass-spring systems of different resolutions to provide coherent behavior for reduced level-of-detail in MSS(Mass-Spring System) meshes. The global optimal material coefficients are derived to match the behavior of provided reference mesh. The proposed method also gives us insight into levels of reduction that we can achieve in the systematic behavioral coherency among the different resolution of MSS meshes. We obtain visually acceptable coherent behaviors for cloth models based on our proposed error metric and identify that this method can significantly reduce the resolution levels of simulated objects. In addition, we have confirmed coherent behaviors with different resolutions through various experimental validation tests. We analyzed spring force estimations through triangular Barycentric coordinates based from the reference MSS that uses a Gaussian kernel based distribution. Experimental results show that the displacement difference ratio of the node positions is less than 10% even if the number of nodes of $MSS^{sim}$ decreases by more than 50% compared with $MSS^{ref}$. Therefore, we believe that it can be applied to various fields that are requiring the real-time simulation technology such as VR, AR, surgical simulation, mobile game, and numerous other application domains.

A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip (둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안)

  • Chang, Sung-Ho;Baek, Ji-Hoon;Lee, Jung-Eon;Mirazamjon, Nematov;Kang, Seok-Wan;Lee, Wang-Bum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

  • Cho, Sun-Mi;Choi, Sung-Hwan;Sung, Sang-Jin;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.5
    • /
    • pp.310-322
    • /
    • 2016
  • Objective: The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods: A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results: The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions: Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss.

An experimental study on the reproducibility and the position of centric relation and Myocentric (중심위와 Myocentric의 재현성 및 상호위치에 관한 연구)

  • Lee, Jong-Yeab;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • The establishment and/or registration of an optimal or physiologic relationship between the maxillae and mandible has long been a subject of considerable interest and controversy in dentistry. Centric relation has been generally accepted as a repeatable starting point for restoring the mouth. Recently, it has been claimed that an electronic device (Myo-Monitor) will produce an accurate, reproducible occlusal registration at the vertical and horizontal occlusal position most compatible with the muscular of each patient. The objectives of this study was to compare Myo-Monitor centric to centric relation at the points of reproducibility and anteroposterior, superoinferior position. A Vericheck instrument was employed for examining difference in the position and reproducibility of mandible reproduced by the various check bite records. For this study, 8 dental students and dentists who had no missing teeth and no difficulties of mandibular movement were selected. The following three different positions of the mandible were registered (a) centric relation manipulated by means of chin-point technique with Lucia-jig, (b) centric relation manipulated by means of bilateral technique, (c) Myocentric manipulated by Myo-Monitor. From this experiment, the following results were obtained. 1. Bilateral manipulated centric relation was more reproducible than Myocentric in anteroposterior and superoinferior position , but more reproducible than centric relation manipulated by means of chin point technique with Lucia-jig in anteroposoterior position. Centric relation manipulated by means of chin Point technique with Lucia-jig was more reproducible than Myocentric in right anteroposterior and superoinferior position. 2. Centric relation by means of chin point technique with Lucia-jig was posterior($2.16{\pm}0.78mm$) and superior($0.41{\pm}0.16mm$) to centric occlusion. Bilateral manipulated centric relation was posterior($1.68{\pm}0.10mm$) and superior($1.02{\pm}0.45mm$) to centric occlusion. Myocentric was anterior($0.75{\pm}0.70mm$), inferior($0.59{\pm}0.44mm$) to centric occlusion.

  • PDF

Correlation Analysis of Land Used Pattern and Air Pollution Using GIS (GIS를 이용한 토지이용상태와 대기오염의 상관성 분석)

  • Choi Byoung Gil;Kim Ki Bum
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2004
  • This study analyzes the interrelationship with air pollution quality and land used patterns, and analyzes the history and optimal allocation of TMS using GIS. Seasonal air pollution map are maded of TMS data in study area, and land used patterns based on Land Cover Classification Map are reclassified as residential area, commercial area, industrial area, traffic concentrated area, and non-Polluted area. Pollution sources can be identified through analyzing the correlation of air pollution and land used patterns by GIS spatial overlaying technique. Hence, the result shows that it coincides with the characteristics of conventional air pollution. Air pollution quality measured by TMS shows similar to that of its near stations or the same land used patterns, through the history and allocation analysis of TMS. Therefore, it is need to consider these characteristics in setting TMS positions in the future.

Design of pillow type contactless recharging device for totally implantable middle ear systems (완전 이식형 인공중이를 위한 베개형 비접촉 충전장치의 설계)

  • Lim, Hyung-Gyu;Kim, Jong-Min;Kim, Min-Kyu;Yoon, Young-Ho;Park, Il-Yong;Song, Byung-Seop;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.78-84
    • /
    • 2005
  • A contactless recharging device for totally implantable middle ear systems has been designed as a pillow type that the user can recharge the implanted battery with taking a rest. The proposed device uses the electromagnetic coupling between the transmitting coil and the receiving coil. To supply sufficient power for the implanted circuits, each coil uses LC resonance and the implanted device uses voltage doubler. A power MOSFET is used for switching the DC voltage of LC parallel circuit and the switching frequency demands on a programmable frequency generator which is controlled by microcontroller. In order to improve the electromagnetic coupling efficiency at specific positions of coil which may vary with the displacement of head, the optimal location of receiving coil was studied, and the 5 transmitting coils in a pillow for recharging the implant module was designed. From such a recharging experiment, it was found that the proposed device could provide the sufficient operating voltage within the distance of 4 cm between pillow and the implanted device.

An Improved Split Algorithm for Indexing of Moving Object Trajectories (이동 객체 궤적의 색인을 위한 개선된 분할 알고리즘)

  • Jeon, Hyun-Jun;Park, Ju-Hyun;Park, Hee-Suk;Cho, Woo-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.161-168
    • /
    • 2009
  • Recently, use of various position base servicesthat collect position information for moving object and utilize in real life is increasing by the development of wireless network technology. Accordingly, new index structures are required to efficiently retrieve the consecutive positions of moving objects. This paper addresses an improved trajectory split algorithm for the purpose of efficiently supporting spatio-temporal range queries using index structures that use Minimum Bounding Rectangles(MBR) as trajectory approximations. We consider volume of Extended Minimum Bounding Rectangles (EMBR) to be determined by average size of range queries. Also, Use a priority queue to speed up our process. This algorithm gives in general sub-optimal solutions with respect to search space. Our improved trajectory split algorithm is going to derive minimizing volume of EMBRs better than previously proposed split algorithm.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.