• Title/Summary/Keyword: optimal positions

Search Result 381, Processing Time 0.03 seconds

A Study on the Robust Optimal Supporting Positions of TFT-LCD Glass Panel (TFT-LCD 용 유리기판의 강건 최적 지지 위치의 선정에 관한 연구)

  • Huh Jae-Sung;Jung Byung-Chang;Lee Tae-Yoon;Kwak Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1001-1007
    • /
    • 2006
  • In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.

A Study on the Rectangular Distribution of far Field Sources in Equivalent Source Method (등가음원법에서의 직육면체형 원거리음원 배치에 관한 연구)

  • 백광현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2004
  • The equivalent source method (ESM) uses two groups of equivalent source positions. One group includes the first order images of the sound source inside the enclosure. The positions of the other group are usually on a spherical surface some distance outside the enclosure. A proper selection of the positions for the far field sources could greatly improve the performance of the modeling accuracy and reduce the number of the sources to achieve the required accuracy. This study uses optimally distributed far field source positions on the surface of enlarged version of the rectangular enclosure instead of using typical spherical distribution. Simulations using various sizes of the box shaped distribution are executed and optimal positions are searched using an optimization technique from the larger number of candidate positions. The results of using these far field source positions are compared and analyzed.

A Sttudy on the Optimal estimation of the Fixed Position and Compterization of the Navigational Calculations (실측선위의 정도개선과 항법계산의 전산화에 관한 연구)

  • 하주식;윤여정
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.2
    • /
    • pp.1-45
    • /
    • 1983
  • This paper concerns the applications of the Kalman filter to navigation and the develment of computer programs of the navigational calculations. Methods to apply the Kalman filter to celestial fix, fix by cross bearing and cocked hat are proposed, and numerical simulations under various noise conditiions are conducted. The accuracy of the optimal positions obtained by the Kalman filter is compared with that of the fixed positiions by radial error method. In the case of celestial fix, an algorithm to estimate the optimal positions by using the linear Kalman filter is presented. The optimal positions by the Kalman filter are compared with the running fixes and with the most probable positions obtained from a single line of position. It is confirmed that the resutls of the proposed method are more accurate than the others. In practical piloting, bearings are generally measured intermittently and the measurement process is nonlinear. It is, therefore, difficult for us to apply the Kalman filter to fix by cross bearing. In order to be used in such an unfavorable case, the extended Kalman filter is revised and the aplicability of the revised extended Kalman filter is checked by numerical simulation under various noise conditions. In a cocked hat, an inside or outside fix is dependent only upon azimuth spread, if the error of each line of position is assumed to be equal both in magnitude and sign. A new technique of selecting a ship's position between an inside fix and an outside fix in a cocked hat by using fix determinant derived from the equation of three lines of position is also presented. The relations among the optimal position by Kalman filter, incentre (or excentre) and random error centtre of the cocked hat are discussed theoretically and the accuracy of the optimal position is compared with that of the others by numerical simulation.

  • PDF

Design and control of quiet zone (principle and example) (조용한 공간 만들기 (방법론과 예))

  • Kim, Yang-Han;Yun, Du-Byeong;Nam, Gyeong-Uk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.565-570
    • /
    • 2000
  • In order to make a quiet zone, one can consider methods to generate a secondary sound field that cancels a primary sound field. Active noise control (ANC) is one of the kinds. This paper mainly deals with the issues on determining the optimal positions of control sources and sensors for making a desired quiet zone. The issues address the reason why the positions are important, how the positions are optimized, and what the measure on the optimal positions is in an uncertain sound field. It is also shown that a power control is applicable to a specific uncertain sound field. In addition, this paper shows that a control material method, which passively changes a boundary condition, is essentially found to be on the same road of ANC.

  • PDF

Calculation of Detector Positions for a Source Localizing Radiation Portal Monitor System Using a Modified Iterative Genetic Algorithm

  • Jeon, Byoungil;Kim, Jongyul;Lim, Kiseo;Choi, Younghyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.212-221
    • /
    • 2017
  • Background: This study aims to calculate detector positions as a design of a radioactive source localizing radiation portal monitor (RPM) system using an improved genetic algorithm. Materials and Methods: To calculate of detector positions for a source localizing RPM system optimization problem is defined. To solve the problem, a modified iterative genetic algorithm (MIGA) is developed. In general, a genetic algorithm (GA) finds a globally optimal solution with a high probability, but it is not perfect at all times. To increase the probability to find globally optimal solution rather, a MIGA is designed by supplementing the iteration, competition, and verification with GA. For an optimization problem that is defined to find detector positions that maximizes differences of detector signals, a localization method is derived by modifying the inverse radiation transport model, and realistic parameter information is suggested. Results and Discussion: To compare the MIGA and GA, both algorithms are implemented in a MATLAB environment. The performance of the GA and MIGA and that of the procedures supplemented in the MIGA are analyzed by computer simulations. The results show that the iteration, competition, and verification procedures help to search for globally optimal solutions. Further, the MIGA is more robust against falling into local minima and finds a more reliably optimal result than the GA. Conclusion: The positions of the detectors on an RPM for radioactive source localization are optimized using the MIGA. To increase the contrast of the measurements from each detector, a relationship between the source and the detectors is derived by modifying the inverse transport model. Realistic parameters are utilized for accurate simulations. Furthermore, the MIGA is developed to achieve a reliable solution. By utilizing results of this study, an RPM for radioactive source localization has been designed and will be fabricated soon.

Optimal Base Position and Joint Configuration of a Wheeled Manipulator

  • Kim, Sung-Bok;Kim, Hyoung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.834-839
    • /
    • 2004
  • In this paper, we investigate the optimal base position and joint configuration of a planar wheeled mobile manipulator in terms of manipulability measure. Taking into account the level of coordination between a manipulator and a platform, both local and global optimization problems are considered. First, based on the kinematic models of a mobile manipulator, the manipulability measures are expressed along with the analysis of the configurational dependency. Second, the geometric symmetry of a mobile manipulator in view of manipulability measure is analyzed, and for some base positions, the best and worst joint configurations are determined, Third, with reverence to the maximum, minimum, and average manipulability measures, the optimal base positions are determined, and the percent improvements due to the base relocation are discussed considering the relative scales among the platform size, the wheel radius, and the link length.

  • PDF

Selection of Connection Position to Change Dynamic Characteristic of Structure (동특성 변경을 위한 구조물의 결합 위치 선정)

  • Kim, Kyung-Won;Park, Youn-Sik;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.930-937
    • /
    • 2003
  • This research deals with how to select connection positions of two substructures to be synthesized. The goal of this research is to find optimal connection positions in order to maximize the fundamental natural frequency of the synthesized structure. The natural frequencies of a connected structure are obtained by modal-force equations. Optimal connection positions can be selected through optimization process. In the optimization process, the natural frequencies of a connected structure are set to object function value and connection positions become design variables. The method described above is applied to synthesis problems of plates, which is initially conducted for FE models and verified through experiments. Especially in experiments. FRF(frequency response function) s are obtained by means of the Modal Testing technique to be used in modal-force equations for synthesizing. Once the substructures are synthesized. the Modal Testing technique is again applied to spot-welded structure using the result from the optimization procedure. It is found that the fundamental natural frequency of the synthesized structure with the optimized result gives higher value than those with the initially given connection positions.

Selection of Connection Position to Change Dynamic Characteristic of Structure (동특성 변경을 위한 구조물의 결합 위치 선정)

  • 김경원;박윤식;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.65-71
    • /
    • 2003
  • This research deals with how to select connection positions of two substructures to be synthesized. The goal of this research is to find optimal connection positions in order to maximize the fundamental natural frequency of the synthesized structure. The natural frequencies of a connected structure are obtained by modal-force equations. Optimal connection positions can be selected through optimization process. In the optimization process, the natural frequencies of a connected structure are set to object function value and connection positions become design variables. The method described above is applied to synthesis problems of plates, which is initially conducted for FE models and verified through experiments. Especially in experiments, FRE(frequency Response function)s are obtained by means of the Modal Testing technique to be used in modal-force equations for synthesizing. Once the substructures are synthesized, the Modal Testing technique is again applied to spot-welded structure using the result from the optimization procedure. It is found that the fundamental natural frequency of the synthesized structure with the optimized result gives higher value than those with the initially given connection positions.

  • PDF

A Study on the Optimal Position for the Secondary Neutron Source in Pressurized Water Reactors

  • Sun, Jungwon;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1291-1302
    • /
    • 2016
  • This paper presents a new and efficient scheme to determine the optimal neutron source position in a model near-equilibrium pressurized water reactor, which is based on the OPR1000 Hanul Unit 3 Cycle 7 configuration. The proposed scheme particularly assigns importance of source positions according to the local adjoint flux distribution. In this research, detailed pin-by-pin reactor adjoint fluxes are determined by using the Monte Carlo KENO-VI code from solutions of the reactor homogeneous critical adjoint transport equations. The adjoint fluxes at each allowable source position are subsequently ranked to yield four candidate positions with the four highest adjoint fluxes. The study next simulates ex-core detector responses using the Monte Carlo MAVRIC code by assuming a neutron source is installed in one of the four candidate positions. The calculation is repeated for all positions. These detector responses are later converted into an inverse count rate ratio curve for each candidate source position. The study confirms that the optimal source position is the one with very high adjoint fluxes and detector responses, which is interestingly the original source position in the OPR1000 core, as it yields an inverse count rate ratio curve closest to the traditional 1/M line. The current work also clearly demonstrates that the proposed adjoint flux-based approach can be used to efficiently determine the optimal geometry for a neutron source and a detector in a modern pressurized water reactor core.

Vibration control of elastic systems (탄성계의 진동제어)

  • 박영필;이상조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.113-118
    • /
    • 1986
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF