• 제목/요약/키워드: optimal passive control

검색결과 154건 처리시간 0.025초

스마트 폼을 이용한 덕트 내 넓은 영역에서의 소음 제어 및 상쇄 경로 최적화 (Active noise control in the global region of a duct using smart foam and FIR filter optimization of cancellation Path)

  • 한제헌;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.525-529
    • /
    • 2002
  • ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

  • PDF

응답 의존형 MR 감쇠기의 성능 평가 (Performance Evaluation of Response-Dependent MR Damper)

  • 이상현;민경원;윤경조
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.511-518
    • /
    • 2006
  • In this study, seismic response mitigation effect of an MR damper generating response-dependent frictional force is investigated. It has been reported in previous studies that passively operated MR damper with constant input current doesn't show better control performance than semi-active MR damper with varying input current calculated by control algorithms such as linear quadratic regulator and sliding mode control. However, in order to operate the MR damper semi-actively, other control systems besides the damper itself such as sensors for measuring structural responses and controller for calculating optimal input current are necessary, which deteriorate the economical efficiency. This study presents a MR damper generating frictional force of which magnitude is controlled in accordance to the displacement and velocity transferred to the damper. Numerical analyses results indicate that the performance of the response dependent MR damper is closely related with the range of the friction force and it can be designed to short better control performance than the passive MR damper.

  • PDF

고속철도 실내소음 저감을 위한 다중채널 ANC 시스템 모델링 (Multi-channel ANC System Modeling for Reducing KTX Interior Noise)

  • 장현석;김새한;이태오;구경완;이권순
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1069-1076
    • /
    • 2012
  • We use largely two methods, how to control the noise of the KTX, they are the passive noise control method and the active noise control method. The passive noise control has been used in a variety of ways since the KTX opening day, but lately it has shown the technical limitations by being dropped sharply. So, it is getting important to conduct the research about ANC that is able to reduce the ambient noise when the environmental-factor changes and be installed easily. To reduce a three-dimensional closed-space sound field like a car of a high-speed rail is hard to do using single channel ANC control system. Therefore we have to model the paths of the noise exactly for reducing the noise. And the control speakers and the error mics should be designed for optimal position. In this paper, we designed the transfer functions for modeling the noise paths under the influence of the distance between control speakers & error mics and primary noise speaker in TEST-BED where there is modeled as actual interior of KTX. We have made the modeling and the simulations of interior environment of KTX car by using three frequency bands of 120Hz, 280Hz, 360Hz. After the modeling, we compared the performance of active noise control and also we analyzed what to affect with difference in distance. After comparing of the performance using Pure Tone 120Hz, 280Hz, 360Hz at each modeling and then we simulated ANC for KTX's interior noise which we measured really and analyzed.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

준능동형 실시간 Feedback 진동제어시스템의 성능평가 (Performance Estimation of Semi-active Real-time Feedback Vibration Control System)

  • 허광희;전준용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.85-94
    • /
    • 2011
  • 본 논문에서는 구조적으로 유연한 특성을 갖는 교량 구조물을 대상으로 외력에 의해 발생되는 진동을 실시간으로 제어하고자 준능동형 실시간 피드백 진동제어시스템을 구성하고, 이를 실험적으로 평가하였다. 여기서 진동제어를 위한 대상 교량 구조물은 서해대교를 약 1/200 크기로 규모화 하여 설계/제작한 모형 교량 구조물을 사용하였고, 실험실 여건을 고려해 규모화 된 El-centro 지진파형으로 구조물을 가진하였다. 또한, 교량 상판 중앙지점에는 전자석이 채용된 전단형 MR 댐퍼를 수직방향으로 설치하여 발생된 진동을 제어하도록 하였고, 동시에 변위계 및 가속도계를 설치하여 구조물의 응답(변위, 가속도)을 획득하였다. 이때 진동제어의 실험은 크게 비-제어, 수동 on/off 제어, Lyapunov 안정론 기반 제어 그리고, Clipped-optimal 제어조건으로 구분하여 실시간 피드백 진동제어실험을 수행하였고, 이때 진동제어의 효과는 상판 중앙지점에 대하여 각 실험방법 별 절대최대변위와 절대최대가속도 그리고, 인가전원의 소모량 등을 성능지수를 이용해 정량적으로 평가하였다. 진동제어실험의 결과로부터, Lyapunov 제어 및 Clipped-optimal 제어방법 모두 구조물의 발생 변위 및 가속도를 효과적으로 감소시켰으며, 특히 진동제어 시 요구되는 외부 인가전원의 소비를 크게 감소시킬 수 있음을 확인하였다. 최종적으로, 본 논문에서 구성한 준능동형 실시간 피드백 진동제어시스템은 교량 구조물에 발생된 진동을 제어 관리하기 위한 적극 효율적인 방법으로 활용될 가능성이 있음을 확인하였다.

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • 제22권2호
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

가변 감쇠를 이용한 충격제어기법의 성능분석 (Performance Investigation of Variable Damping Shock Attenuation Logic)

  • 오현웅
    • 항공우주시스템공학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2013
  • Launch vehicles cause several shock events during their lift-off. The excessive shock loads in the several thousands of g's level can results in permanent damage to electronics, optics and other sensitive payload components. The shock can be attenuated by mounting a shock absorber. In this paper, we proposed a semi-active control logic to attenuate the shock so that the input acceleration to main instruments does not exceed the allowable maximum acceleration value. For the performance investigation, two elements model of variable damping and spring stiffness has been used and the analysis results indicate that the proposed semi-active control logic attenuates shock level better than an optimal passive and conventional semi-active on-off control system.

Pontryagin 최소 원리를 이용한 최적접종에 관한 연구 (A Study of on the Optimal Vaccinaton using Pontryagin's Minimum Principle)

  • 정형환;주수원;이광우
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.11-16
    • /
    • 1988
  • The optimum control theory has been applied to the problem of finding the most economic use of active and passive immunization controls. Application of Pontryagin's Minimum Principle to this case, involving functions of delayed control has been demonstrated and a procedure has been developed for the numerical solution of the resulting control problem. Using the numerical procedure, optimum control strategies have been obtained for different values of reported case cost.

  • PDF

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

반응표면법을 이용한 진동-음향 연성계의 흡음재 최적배치 (Optimum Allocation of Sound Absorbing Materials in a Vibroacoustic System using Response Surface Methodology)

  • 홍도관;백황순;우병철;안찬우
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1196-1203
    • /
    • 2011
  • Statistical optimum methodology of table of orthogonal array, ANOM, ANOVA and RSM are applied to formulate optimum allocation design with design variables. It can be minimized average SPL of control volume, the objective function in closed system by optimal allocated positions of absorbing material. Structural natural frequency and acoustic natural frequency of cavity are analyzed by FEM and BEM in the closed system. Using BEM, average SPL of specific control volume is calculated according to the condition before using absorbing material and after using it. It is shown that noise is reduced by $5.02dB_{RMS}$ by absorbing material located at optimal position and minimum $1.83dB_{RMS}$ and maximum $3.47dB_{RMS}$ by the table of orthogonal array.