• Title/Summary/Keyword: optimal packing

Search Result 103, Processing Time 0.026 seconds

Approximate Solution to Optimal Packing Problem by Renewal Process (재생확률과정에 의한 최적 포장계획 수립에 관한 연구)

  • Lee, Ho-Chang
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • We are concerned with the packing policy determines the optimal packing of products with variable sizes to minimize the penalty costs for idle space and product spliting. Optimal packing problem is closely related to the optimal packet/record sizing problem in that randomly generated data stream with variable bytes are divided into a unit of packet/record for transmitting or storing. Assuming the product size and the production period are independently determined by renewal process, we can approximate the renewal process and formulate the optimization problem that minimize the expected packing cost for a production period. The problem is divided into two cases according to whether a product is allowed to split or not. Computational results for various distributions will be given to verify the approximation procedure and the resulting optimization problem.

  • PDF

Optimal Design of Mold Layout and Packing Pressure for Automobile TCU Connector Cover Based on Injection Molding Analysis and Desirability Function Method (사출성형 해석과 선호함수법에 기초한 자동차 TCU 커넥터 커버의 금형 레이아웃 및 보압의 최적 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the optimal design of the multi-cavity mold layout and packing pressure for the automobile TCU connector cover is determined based on the injection molding analysis and the desirability function method for multi-characteristic optimization. The design characteristics to be optimized are the warpage and sink marks of the product, the scrap of the feed system, and the clamping force. The optimal design is determined by performing injection molding analysis and desirability analysis for design alternatives defined by a complete combination of five mold layouts and six-level packing pressure. The optimal design shows that the desirability values for individual characteristics are quite high and balanced, and the resulting values of individual characteristics are satisfactorily low.

Effect of Packing Condition of Polyethylene film on Storage of a Major Herbal Medicine Material, Anemarrhena Rhizome

  • Choi, Seong-Kyu
    • Plant Resources
    • /
    • v.6 no.1
    • /
    • pp.53-56
    • /
    • 2003
  • To develop optimal storage method of root of Anemarrhena Rhizome, which has been grown as major cultural herbal medicine material, root of Anemarrhena Rhizome was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The rot ratio of root during the storage period was not significantly different among packing materials but was significantly different among sealing conditions. Conclusively vacuum packing and complete sealing with polyethylene film appears to be optimal for storage of Anemarrhena Rhizome.

  • PDF

Efficient Block Packing to Minimize Wire Length and Area

  • Harashima, Katsumi;Ootaki, Yousuke;Kutsuwa, Toshirou
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1539-1542
    • /
    • 2002
  • In layout of LSI and PWB, block pack- ing problem is very important in order to reduce chip area. Sequence-pair is typical one of conventional pack- ing method and can search nearly-optimal solution by using Simulated Annealing(SA). SA takes huge computation time due to evaluating of various packing results. Therefore, Sequence-pair is not effective enough for fast layout evaluation including estimation of wire length and rotation of every blocks. This paper proposes an efficient block packing method to minimize wire length and chip area. Our method searches an optimal packing efficient- ly by using a cluster growth algorithm with changing the most valuable packing score on packing process.

  • PDF

A Study on Storage of a Major Herbal Medicine Material, Peucedani Radix

  • Choi, Seong-Kyu;Yun, Kyeong-Won;Kwon, Byung-Sun
    • Plant Resources
    • /
    • v.5 no.2
    • /
    • pp.114-117
    • /
    • 2002
  • To develop optimal storage method of root of Peucedani Radix, which has been grown as major cultural herbal medicine material, root of Peucedani Radix was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The ratio of root rot during the storage period was not significantly different between packing materials but was significantly different between sealing conditions. Conclusively vacuum packing and complete sealing with polyethylene film appears to be optimal for storage of Peucedani Radix.

  • PDF

A Study on Storage of Major Herbal Medicine Materials, Zingiberis Rhizoma

  • Choi, Seong-Kyu;Yun, Kyeong-Won;Shin, Kil-Man
    • Plant Resources
    • /
    • v.5 no.3
    • /
    • pp.224-227
    • /
    • 2002
  • To develop optimal storage method of root of Zingiberis Rhizoma, which has been grown as major cultural herbal medicine materials, root of Zingiberis Rhizoma, was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The ratio of root rot during the storage period was not significantly different between packing materials but was significantly different between sealing conditions. Conclusionally, vacuum packing and complete sealing with polyethylene film appears to be optimal for storage of Zingiberis Rhizoma.

  • PDF

Effect of Storage Condition on Yield and Quality of Angelica acutiloba Radix

  • Choi, Seong-kyu;Yun, Kyeong-Won;Chon, Sang-Uk;Seo, Young-nam
    • Plant Resources
    • /
    • v.5 no.1
    • /
    • pp.70-73
    • /
    • 2002
  • To develop an optimal storage method of root of Angelica acutiloba Radix, which has been grown as major herbal medicine material to be cultivated, root of Angelica acutiloba Radix, was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The ratio of root rot during the storage period was not significantly different between packing materials but was significantly different between sealing conditions. In conclusion, vacuum packing and complete sealing with polyethylene film appears to be most optimal for storage of Angelica acutiloba Radix.

  • PDF

Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping (신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발)

  • 허정훈;이건우;안재홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

Software Development for the Analysis and Prediction of Packing Density of Multi-sized Mixture Particles (Multi-sized 혼합입자의 충전 분율 해석 및 예측을 위한 소프트웨어 개발)

  • Oh, Min;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.636-642
    • /
    • 2007
  • Software program to predict the packing density of multi-sized and multi-component particulate system was developed. For this purpose, the experiment to measure the packing density of AP (ammonium perchlorate) and Al (aluminum) particles with different sizes and their mixtures was carried out. The packing densities obtained from various experiments were compared with the predicted data from the developed software program. In the case of the packing density of the binary system, which is comprised of two different size particles and/or two different components, the relative errors were ranged 0.25~13.13%, and in the same venue the relative errors of the ternary system were 0.25~13.13%. Agreement between experimental data and the predicted results is reasonably accurate. In order to achieve the targeted packing density, the software program calculated the contour of the component particles and this will contribute the formulation of optimal packing systems.

Inverse Bin-Packing Number Problems: Polynomially Solvable Cases

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • Consider the inverse bin-packing number problem. Given a set of items and a prescribed number K of bins, the inverse bin-packing number problem, IBPN for short, is concerned with determining the minimum perturbation to the item-size vector so that all the items can be packed into K bins or less. It is known that this problem is NP-hard (Chung, 2012). In this paper, we investigate some special cases of IBPN that can be solved in polynomial time. We propose an optimal algorithm for solving the IBPN instances with two distinct item sizes and the instances with large items.