• Title/Summary/Keyword: optimal maintenance

Search Result 855, Processing Time 0.033 seconds

Quality Changes as Affected by Storage Temperature and Polyamide Film Packaging in Paprika (Capsicum annuum L.) (파프리카 저장 온도 변화와 폴리아미드 필름 포장 적용에 따른 품질 변화)

  • Erdene, Byambaa Bayar;Lee, Jung-Soo;Park, Me Hea;Choi, Ji Won;Eum, Hyang Lan;Malka, Siva Kumar;Yun, Yeoeun;Kim, Chae-Hee;Kim, Ho Cheol;Lee, Jinwook;Park, Ki Young;Bae, Jong Hyang;Lee, YounSuk;Jeong, Cheon Soon;Park, Jong-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.115-125
    • /
    • 2022
  • The purpose of this study was to examine the effect of packaging on quality maintenance of paprika (Capsicum annuum L. cv. Nagano RZ) stored at three different temperatures. In Korea, paprika is stored and distributed under ambient conditions. To ensure the freshness maintenance, determining optimal storage temperature is necessary. Paprika were unpacked (control) or packed with polyamide film and stored at 5℃, 10℃ and 20℃ for 35 days. Quality characteristics such as weight loss and appearance were examined. Paprika packed with polyamide film showed less quality changes compared to unpacked paprika under all the storage temperatures. The commercial properties tended to decrease rapidly during storage at 20℃ regardless of packing. The degree of weight loss was significantly lower in packed paprika compared to unpacked paprika. It was found that soluble solids, pigments, hardness, etc. were complexly affected by storage temperature and film packaging. For paprika, the storage temperature of 5℃ or 10℃ was effective in maintaining freshness; paprika packed in polyamide film packing maintained greater freshness than unpacked paprika. Our results showed that, packaging is required to preserve the freshness and to improve the marketability of paprika in the domestic market. It seems that it is necessary to continuously search for an effective packaging method.

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

The Application of an Algal Fence for the Reduction of Algal Intake into the Water Intake Facility (조류펜스의 조류 저감 효과에 대한 실험적인 평가)

  • Jang, Min-Ho;Park, Sung-Bae;Jung, Jong-Mun;Roh, Jae-Soon;정광석, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.467-472
    • /
    • 2003
  • In this study, an algal fence was developed and applied to reduce the input of algal scum into the water intake facility. The effectiveness of vertical algal fences(overlapped three types of meshes, (312 ${\mu}m$ ${\times}$ 375 ${\mu}m$, 390 ${\mu}m$ ${\times}$ 450 ${\mu}m$, and 0,7 cm ${\times}$ 1cm; vertical depth, 1.5 m; length of fence, about 120 m)) was experimentally tested at a water intake facility (Mulgum, lower Nakdong River). The application of the fence resulted in the statistically significant difference of algal biomass between inside and outside of the fence. According to ANOVA test, chi. a concentration in Day-1showed large difference at each depth of 0, 1, 2 m (0.001> p at each depth, n = 16 respectively). Especially large difference was observed at 0 and 1 m depth. However, the fence was only effective for a short period and its efficiency declined by Day-5after the installation. When better maintenance options for the fence are prepared, e.g. mechanical installation and periodic backwashing of the fence, the performance of algal fence may be sustained. In addition, reliable models for bloom prediction are required to provide an advanced indication of the optimal timing for the installation so that effective operation would be achieved.

Development of the Decision-Making System for National Highway Pavement Management (국도 포장관리를 위한 의사결정시스템 개발)

  • Do, Myungsik;Kwon, Sooahn;Lee, Sang Hyuk;Kim, Yongjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.645-654
    • /
    • 2014
  • PMS (Pavement Management System) of National highways in Korea has used HDM (Highway Development and Management)-4 developed by World Bank for decision-making for maintenance and rehabilitation of pavements. However using HDM-4 is not appropriate in Korea because HDM-4 requires excessive input factors for analysis and economic analysis models loaded in HDM-4 are not suitable for Korean circumstances. Thus this study aims development of decision-making system for effective pavement management with reflecting Korean circumstances. Moreover this study proposed to define component of system, deterioration models, and basic units for component, and to analyze characteristics of component of system, and also to develop optimal decision-making system. The decision-making system for PMS mainly consists of 1) DB of highways, traffics, and socio-economic index, 2) pavement deterioration model, 3) speed prediction models by pavement conditions, 4) economic evaluation models, and 5) decision-making supporting system. Also this study provided analysis results in case studies for system verifications. However pavement deterioration models considering future probabilistic characteristic and index of decision-making are needed to develop for a further study.

Vulnerability Analysis for Industrial Control System Cyber Security (산업제어시스템의 사이버보안을 위한 취약점 분석)

  • Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.137-142
    • /
    • 2014
  • Industrial control system (ICS) is a computer based system which are typically used in nation-wide critical infra-structure facilities such as electrical, gas, water, wastewater, oil and transportation. In addition, ICS is essentially used in industrial application domain to effectively monitor and control the remotely scattered systems. The highly developed information technology (IT) and related network techniques are continually adapted into domains of industrial control system. However, industrial control system is confronted significant side-effects, which ICS is exposed to prevalent cyber threats typically found in IT environments. Therefore, cyber security vulnerabilities and possibilities of cyber incidents are dramatically increased in industrial control system. The vulnerabilities that may be found in typical ICS are grouped into Policy and Procedure, Platform, and Network categories to assist in determining optimal mitigation strategies. The order of these vulnerabilities does not necessarily reflect any priority in terms of likelihood of occurrence or severity of impact. Firstly, corporate security policy can reduce vulnerabilities by mandating conduct such as password usage and maintenance or requirements for connecting modems to ICS. Secondly, platfom vulnerabilities can be mitigated through various security controls, such as OS and application patching, physical access control, and security software. Thirdly, network vulnerabilities can be eliminated or mitigated through various security controls, such as defense-in-depth network design, encrypting network communication, restricting network traffic flows, and providing physical access control for network components.

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.

Energy Efficient Lighting Control Facilities Related to Daylight Levels (주광(晝光) 대등형 가변조명(可變照明) 제어설비의 적용 및 통합성능)

  • Kim, Jeong-Tai;Kim, Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.8-15
    • /
    • 2006
  • To reduce costs and address other practical concern related to architectural lighting, we have been involved in various aspects of advanced daylighting design and control. If we look toward future building trends, we see that the advanced has already successfully deployed such complex lighting control systems. This paper takes a broad view of what advanced manufacturers have done to develop energy efficient lighting control technologies such as sensors, lumen maintenance, time of day scheduling, peak demand reduction and so forth. First of all strategies, daylighting controls would also need to be commissioned to respond to the specific daylighting signature of the zone. To translate the daylight in term of the amount of energy savings, an electric lighting system is designed and automatic on-off control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. The lighting analysis program, Lumen-Micro predicts the optimal layout of conventional fluorescent and incandescent lighting fixtures to meet the designed lighting level and calculates unit power density, which translates the demanded amount of lighting energy.

Neutralization Treatment of Acid Mine Drainage Using Ca(OH)2 (소석회를 이용한 산성광산배수 중화처리)

  • Park, Young-Goo;Park, Joon-Seok;Hong, Seong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.391-396
    • /
    • 2005
  • This study was conducted to neutralize acid mine drainage (AMD) of Soo and Hambaek mines, located in Kangwon-Do Korea, using $Ca(OH)_2$. When 0.295 g $Ca(OH)_2/L$(AMD) was added to the drainage in a neutralization reactor, pH of liquid in the reactor and the effluent were maintained at 9.5 and 8.4, respectively. The pH met the required effluent standard. With 10~50% of feedback of effulent sludge to the reactor, the pH of neutralized fluid in the reactor remained nearly constant, but $SO{_4}^{-2}$ concentration in the effluent increased adversely compared to the non-return sludge case. With 30% of sludge feedback, it was possible to decrease suspended solids (SS) concentration in the effluent without a problem in Fe concentration. When 100 mL of 0.1 M $BaCl_2$ was added to 1 L of AMD treated with $Ca(OH)_2$, removal efficiency of $SO{_4}^{-2}$ increased to over 90%. Aanalyses of pH, Fe, and $SO{_4}^{-2}$ showed that the optimal results were obtained when pH of neutralizatio reactor and sludge return ratio were maintained at 9.5 and 30%. This can result in possible cost reduction of 31.4% for maintenance and 29.8% for facility construction by alternating $Ca(OH)_2$ to NaOH.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia;Xu, Yanli;Jia, Ming;Zhou, Jiti;Yuan, Shouzhi;Zhang, Jinsong;Zhang, Zhen-Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1656-1664
    • /
    • 2009
  • Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.