• Title/Summary/Keyword: optimal growth condition

Search Result 538, Processing Time 0.029 seconds

Studies on Protoplast Formation of Trichoderma spp. (Trichoderma 속의 제균종에 대한 protoplast formation에 관한 연구)

  • Sung, Yun-Sub;An, Won-Gun;Ju, Woo-Hong;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 1992
  • This research was focused on investigation of the general condition for protoplast formation of Trichoderma speues. for protoplast formation, the mycelia cultured in YM medium were collected from each growth phase and were treated with the Iytic enzymes. This procedure was carried out by all strains. The most optimal conditions of NOVOZYM 234 and DRISELASE were determined by T. saturnisporum IAM 12535 and T. longibruchiatum IBM 13107, respectively. The effect of osmotic stabilizers appeared ${KCI}>(NH_4)_2{SO_4}>NaCl>mannitol>{MgSO}_4$ and the optimal concentration of each osmotic stabilizer wns determined by 0.6-0.9 M. The optimal condition of DRISELASE for protoplast formation ; optimal pH 5.0, optimal concentration, 2%, optimal reaction time, 4 hours, and optimal temperature, $30^{\circ}C$. The optimal condition of NOVOZYM 234 for protoplast formation ; optimal pH 5.5, optimal concentration 1%, optimal reaction time 3 hours, and optimal temperature $30^{\circ}C$. The optimal culture period of mycelia for protoplast formation was between the initial and the middle exponential phase. Generally, DUSELASE was more effective than NOVOZYM 234 on protoplast formation except for T. longibruchiatum IAM 13107 and T. viride IAM 5141.

  • PDF

Optimal Nutritional Requirements of Carrot Hairy Roots (당근 모상근의 최적 영양 요구성)

  • 김지현;유영제
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.46-54
    • /
    • 1995
  • The physiological characteristics of carrot hairy roots and suspension cells were examined based on their nutritional requirements. Inorganic nutrient (phosphorous and ammonium) requirements of carrot hairy roots were similar to those of suspension cells. Optimal sucrose concentration for the growth of hairy roods (7%) was different from that of suspension cells (3%). Since suspension cells were move easily affected by the environmental condition, e.g., osmotic stress, than hairy roofs which made the suitable growth condition for cells, it can be understood that optimal sucrose concentration for the growth of hairy roots was higher than that for the growth of the suspension cells. To investigate the roles of sucrose on the growth of hairy roots, the effects of sucrose on the fresh weight and dry weight was analysed by the addition of mannitol as an osmolicum. Sucrose acts also as an energy source for hairy roots rather than as an osmotic regulator, since the increase of dry weight was higher than that of fresh weight at the given sucrose concentration.

  • PDF

A Study of Optimum Growth Rate on Large Scale Ingot CCz (Continuous Czochralski) Growth Process for Increasing a Productivity (생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구)

  • Lee, Yu-Ri;Roh, Ji-Won;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.775-780
    • /
    • 2016
  • Recently, photovoltaic industry needs a new design of Czochralski (Cz) process for higher productivity with reasonable energy consumption as well as solar cell's efficiency. If the process uses the large size reactor for increasing productivity, it is possible to produce a 12-inch, rather than the 8-inch. Also the continuous czochralski process method can be maximized to increase productivity. In this study, it was designed to improve the yield value of ingot with optimal condition which reduce consumption of electrical power. It has increased the productivity of the 12-inch ingot process condition by using CFD simulation. I have found optimal growth rate, by comparing each growth rate the interface shape, Temperature gradient, power consumption. As a result, the optimal process parameters of the growth furnace has been derived to improve for the productivity and to reduce energy. This study will contribute to the improvement of the productivity in the solar cell industry.

Mycelial chracteristics artificial cultivation of Fomitopsis pinicola(Pers) Pilot (소나무잔나비버섯(Fomitopsis pinicola) 인공재배를 위한 균사 배양적 특성)

  • Chang, Hyun-You;Oh, Seung-Hee;Lee, Hoo-Jin
    • Journal of Mushroom
    • /
    • v.2 no.4
    • /
    • pp.207-213
    • /
    • 2004
  • The results of examining characteristics of mycelial growth and culture condition for determining the condition of artificially culturing Fomitopsis pinicola are as follows. 1) Mycelial growth and density of F. pinicola. were the highest in the medium of PIDA(Pine Dextrose Agar;66.3mm/10d) followed by the order of GDA, PDA, CDA, PODA, ODA, YM, MCM, MEA(pH 4.7), CHA, and MEA(pH 4.7). 2) Optimal temperature for the mycelial growth and density of F. pinicola were shown to be $30^{\circ}C$, but the mycelia were dead at $40^{\circ}C$. the mycelial growth and density of KNAC9005 strains was the highest at $30^{\circ}C$(66.3mm/10d) followed by the order of 25, 20, 15, 35, 10, and $5^{\circ}C$. 3) Optimal pH for the mycelial growth and density of $40^{\circ}C$ was revealed to be 6.0(88.4mm/10d). above or below pH 6.0, the mycelial growth and density were shown to be retarded. 4) Optimal carbon, nitrogen and organic acid sources for the spawn growth of $40^{\circ}C$ were maltose(331mg/25ml/15d), peptone(347mg/25ml/15d), and glutamic acid(357mg/25ml/15d), respectively. Optimal level of biotin was 370mg/15d and optimal C/N ratio was 40.

  • PDF

Mycelial characteristics for the artificial cultivation of Inonotus obliqua (Pers.) Pilot (차가버섯(Inonotus obliqua) 인공재배를 위한 균사 배양적 특성)

  • 장현유
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • The results of examining characteristics of mycelial growth and culture condition for determining the condition of artificially culturing Inonotus obliqua (chaga) are as follows. 1) Mycelial growth and density oft, oblique were the highest in the medium of BDA (Birch Dextrose Agar; 66.3mm/10d) followed by the order of GDA, PDA, CDA, PODA, ODA, YM, MCM, MEA (pH 7.0), CHA, and MEA (pH 4.7). 2) Optimal temperature for the mycelial growth and density of 1. obliqua were shown to be 30$^{\circ}C$, but the mycelia were dead at 40$^{\circ}C$. the mycelial growth and density of KNAC3005 strains was the highest at 30$^{\circ}C$(66.3mm/10d) followed by the order of 25, 20, 15, 35, 10, and 5$^{\circ}C$. 3) Optimal pH for the mycelial growth and density were revealed to be 6.0 (88.4mm/10d). Above or below pH 6.0, the mycelial growth and density were shown to be retarded. 4) Optimal carbon, nitrogen and organic acid sources for the spawn growth of 40 were maltose (331mg/25$m\ell$/15d), peptone (347mg/25$m\ell$/15d), and glutamic acid (357mg/25$m\ell$/15d), respectively. Optimal level of biotin was 370mg/15d and optimal C/N ratio was 40.

Stunting and Gut Microbiota: A Literature Review

  • Jessy Hardjo;Nathasha Brigitta Selene
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2024
  • Stunting, a condition characterized by impaired growth and development in children, remains a major public health concern worldwide. Over the past decade, emerging evidence has shed light on the potential role of gut microbiota modulation in stunting. Gut microbiota dysbiosis has been linked to impaired nutrient absorption, chronic inflammation, altered short-chain fatty acid production, and perturbed hormonal and signaling pathways, all of which may hinder optimal growth in children. This review aims to provide a comprehensive analysis of existing research exploring the bidirectional relationship between stunting and the gut microbiota. Although stunting can alter the gut microbial community, microbiota dysbiosis may exacerbate it, forming a vicious cycle that sustains the condition. The need for effective preventive and therapeutic strategies targeting the gut microbiota to combat stunting is also discussed. Nutritional interventions, probiotics, and prebiotics are among the most promising approaches to modulate the gut microbiota and potentially ameliorate stunting outcomes. Ultimately, a better understanding of the gut microbiota-stunting nexus is vital for guiding evidence-based interventions that can improve the growth and development trajectory of children worldwide, making substantial strides toward reducing the burden of stunting in vulnerable populations.

Characterization of Diesel Degrading Enterobacter cancerogenus DA1 from Contaminated Soil

  • Kim, Sang-Jun;Joo, Gil-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • The petroleum industry is an important part of the world economy. However, the massive exposure of petroleum in nature is a major cause of environmental pollution. Therefore, the microbial mediated biodegradation of petroleum residues is an emerging scientific approach used to resolve these problem. Through the screening of diesel contaminated soil we isolated a rapid phenanthrene and a diesel degrading bacterium identified as Enterobacter cancerogenus DA1 strain through 16S rRNA gene sequence analysis. The strain was registered in NCBI with an accession number MG270576. The optimal growth condition of the DA1 strain was determined at pH 8 and $35^{\circ}C$, and the highest degradation rate of the diesel was achieved at this condition. At the optimal condition, growth of the strain on the medium containing 0.05% phenanthrene and 0.1% of diesel-fuel was highest at 45 h and 60 h respectively after the incubation period. Biofilm formation was found significantly higher at $35^{\circ}C$ as compared to $30^{\circ}C$ and $40^{\circ}C$. Likewise, the lipase activity was found significantly higher at 48 h after the incubation compared to 24 h and 72 h. These results suggest that the Enterobacter cancerogenus DA1 could be an efficient candidate, for application through ecofriendly scientific approach, for the biodegradation of petroleum products like diesel.

The lyophilization and stability of Salmonella typhi Ty21a (Salmonella thphi Ty21a의 동결 건조와 안정성)

  • 김세란;박동우;전홍렬;김희준;한성순;김기호;김홍진
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.793-797
    • /
    • 1999
  • Salmonella typhi Ty21a is an attenuated strain of S. typhimurium and used for oral typhoid vaccine. In an attempt to increase the stability of Ty21a manufacturing typhoid vaccine, we studied about the stability of freeze-dried Th21a including additives at various temperature conditions. In order to investigate the freeze-drying rate of Ty21a according to various absorbance, we lyophilized Ty21a by using 8% sucrose as a stabilizer. The optimal freeze-drying rate of Ty21a was appeared when OD (optical density) value of the growth was between 2.5 and 3.0. To investigate the stability of Ty21a at various temperature, the viability was measured after storaging the freeze-dried Ty21a at the room temperature, cold and freezing condition for 1 week. The viability of Ty21a in cold and freezing storage condition was 5 times more stable than in room temperature. To search the most stable additives for the freeze-dried Ty21a, the viability of Ty21a including additives at the various storage condition was estimated. Mannitol and loctose were the most stable additives. Theses results suggest that the OD value of Ty21a growth, low temperature, mannitol and lactose are important factors for the optimal freeze-drying rate, the stable storage and the most stable additives, respectively.

  • PDF

An Application of the Balanced Quadratic Classification Rule on the Discriminant Analysis in Growth Curve Model (성장곡선모형의 판별분석에서 균형이차분류법의 적용)

  • Shim, Kyu-Bark
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.2
    • /
    • pp.53-67
    • /
    • 1995
  • The problem considered here is to find the optimal discriminant analysis method in growth curve model. It has been studied how to find correct prior probability for the effective classification in discriminant analysis. We use the balanced condition to calculate prior probability. From the informative simulation study, new classification rule for the growth curve model is suggested. The suggested classification rule has better classification result than the other previously suggested method in terms of error rate criterion.

  • PDF

Degradation characteristics and intermediate study of tetracycline in aqueous system by liquid ferrate(VI) (Liquid ferrate(VI)에 의한 다양한 수중 환경에서의 tetracycline 분해특성 및 중간생성물 연구)

  • Park, Kyeong-Deok;Kang, Dong-Hwan;So, Yoon-Hwan;Cho, Joung-Hyung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.61-73
    • /
    • 2020
  • Tetracycline is one of the most commonly used antibiotics in domestic and foreign livestock industries to suppress the growth of pathogens. Tetracycline has been reported as a non-biodegradable compound. Therefore it has been not completely removed in the sewage treatment process. In this study, tetracycline was degraded using liquid ferrate (VI). Based on these experiments, the optimal water condition (pH and water temperature) were selected, appropriate liquid ferrate (VI) dosage was calculated, and finally the degradation pathway was estimated with the intermediate products detected by LC/MS/MS. All degradation experiments were completed within 30 seconds and the optimal condition was obtained in basic condition (pH 10) at room temperature (20℃). And the appropriate molar ratio between tetracycline and liquid ferrate (VI) was 12.5:1. Finally, 12 intermediate products were detected with LC/MS/MS and the degradation pathways and the degradation pathways and proposed the degradation pathways.