• Title/Summary/Keyword: optimal fermentation time

Search Result 166, Processing Time 0.023 seconds

Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties (이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성)

  • Lee, Su-Seon;Park, Si-Hyang;Kim, Hyeun-A;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.542-550
    • /
    • 2016
  • This study was carried out to investigate the optimal processing conditions for odor removal and maximal antioxidant effects of oyster (Crassostrea gigas) hydrolysate. The optimal hydrolysis conditions were 3.3% neutrase as the protease, $50^{\circ}C$ as the hydrolysis temperature, and 8.3 h as the hydrolysis time. Fish odor of enzymatic oyster hydrolysate was greatly reduced during Saccharomyces cerevisiae fermentation at $24^{\circ}C$ with 0.5% glucose. The protein content of the fermentation product from oyster hydrolysate powder was 25.7%, which contained the major amino acids Glu, Asp, Lys, Arg, Gly, and Ala, whereas Leu, Ala, Phe, Val, and Tau were abundant free amino acids. The important minor minerals were Zn and Fe. Toxicity against Chang cells was not observed in the fermentation product from the oyster hydrolysate up to $200{\mu}g/mL$. The results suggest that fermentation with S. cerevisiae could reduce the fish odor of enzymatic oyster hydrolysate. The hydrolysate has potential application as a food ingredients and nutraceutical.

Quality Characteristics of Barley Leaves Tea White Bread with Hemicellulase (헤미셀룰라아제를 첨가한 보리잎차 식빵의 품질 특성)

  • Yeom, Kyung-Hun;Kim, Mun-Yong;Chun, Soon-Sil
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.178-185
    • /
    • 2010
  • Barley leaves tea white bread were prepared by the addition of 0.005, 0.010, 0.015, and 0.020% hemicellulase to flour of the basic formulation. The experiments and control were then compared in terms of quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, internal surface appearances, and sensory qualities in order to determine the optimal ratio of hemicellulase in the formulation. There were no significant differences in pH and total titratable acidity of dough and bread among the experiments. Fermentation power of dough expansion were increased as incubation time increased. Bread made by the addition of hemicellulase had significantly higher specific volume than the control group. However, lightness and yellowness showed the reverse effect. Greenness was not significantly different among the samples. Baking loss was the highest at the 0.020% addition level, and moisture content was maximal with the 0.010% addition, while the lowest in the control bread samples. As hemicellulase contents increased, harness and fracturability decreased. Resilience was maximal with the 0.015% addition, and was minimal in the 0.005% group. In the sensory evaluation, color, flavor, softness, overall acceptability, barley leaves flavor, delicious taste, astringency, bitterness, and off-flavor were not significantly different among the samples. In coclusion, the results indicate that adding 0.010% hemicellulase in barley leaves tea white bread is optimal for quality and provides a product with reasonably high overall acceptability.

Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145 (Gluconacetobacter persimmonensis KJ145를 이용한 Bacterial Cellulose 및 초산발효에 미치는 Ethanol의 영향)

  • 이오석;장세영;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.181-184
    • /
    • 2003
  • We investigated the effect of ethanol on the production of cellulose and acetic acid fermentation by Gluconacetobacter persimmonensis KJ145. Results showed that bacterial cellulose productivity was highest when 2% ethyl alcohol was added to apple-juice medium. For acetic acid production, 7% ethyl alcohol was needed. Optimal concentration of ethyl alcohol was 5% for simultaneous production of bacterial cellulose and acetic acid. For simultaneous production of bacterial cellulose and acetic acid, optimal nitrogen source and optimal concentration were corn steep liquor and 15% (w/v), respectively Optimal culture time for simultaneous production of bacterial cellulose and acetic acid was 14 days. At the optimal condition, Cluconacetobacter persimmonenis KJ145 produced 7.55 g/L of bacterial cellulose (dry weight).

Two-Stage Fermentation for 2-Ketogluconic Acid Production by Klebsiella pneumoniae

  • Sun, Yuehong;Wei, Dong;Shi, Jiping;Mojovic, Ljiljana;Han, Zengsheng;Hao, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • 2-Ketogluconic acid production by Klebsiella pneumoniae is a pH-dependent process, strictly proceeding under acidic conditions. Unfortunately, cell growth is inhibited by acidic conditions, resulting in low productivity of 2-ketogluconic acid. To overcome this deficiency, a two-stage fermentation strategy was exploited in the current study. During the first stage, the culture was maintained at neutral pH, favoring cell growth. During the second stage, the culture pH was switched to acidic conditions favoring 2-ketogluconic acid accumulation. Culture parameters, including switching time, dissolved oxygen levels, pH, and temperature were optimized for the fed-batch fermentation. Characteristics of glucose dehydrogenase and gluconate dehydrogenase were revealed in vitro, and the optimal pHs of the two enzymes coincided with the optimum culture pH. Under optimum conditions, a total of 186 g/l 2-ketogluconic acid was produced at 26 h, and the conversion ratio was 0.98 mol/mol. This fermentation strategy has successfully overcome the mismatch between optimum parameters required for cell growth and 2-ketogluconic acid accumulation, and this result has the highest productivity and conversion ratio of 2-ketogluconic and produced by microorganism.

Optimized Lactic Acid Fermentation of Soybean Curd Residue (Biji)

  • Baek, Joseph;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.397-404
    • /
    • 2002
  • Soybean curd residue (SCR) was fermented by lactic acid bacteria, Lactobacillus rhamnosus LS and Entercoccus faecium LL, isolated from SCR. The pH, titratable acidify and viable cell counts were determined from the fermented SCR to evaluate the lactic acid production and growth of lactic acid bacteria. Optimal amounts of pretense enzyme and glucose, and ideal fermentation time for SCR fermentation were estimated by response surface methodology (RSM). Raw SCR fermented by indigenous microorganisms had 0.78 % titratable acidity, The acid production in SCR fermented by L. rhamnosus LS was greatly enhanced by the addition of glucose and lactose. However only glucose increased acid production by Ent. faecium LL. The proof test of SCR fermentation demonstrated that similar results for titratable acidity, tyrosine content and viable cell counts to that predicted could be obtained by the at optimized fermentation conditions. In the presence of 0.029 % (w/w) pretense enzyme and 0.9% (w/w) glucose, the SCR fermented by Ent. faecium LL showed 1.07% (w/v) of titratable acidity, 1.02 mg% tyrosine content and 2$\times$10$^{9}$ (cfu/g) of viable cell counts. With the SCR fortified with 0.033% pretense enzyme and 1.7% glucose, L. rhamnosus LS showed 1.8% (w/v) of titratable acidity, 0.92 mg% of tyrosine content and 2$\times$10$^{9}$ (cfu/g) of viable cell counts.

Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

  • Sun, Jie;Xu, Jinhao;Ge, Rufang;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1205-1212
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods: A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results: The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion: A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment.

Growth Inhibition of Clostridium difficile by Fermented Broccoli with Leuconostoc mesenteroides (Leuconostoc mesenteroides를 이용한 브로콜리 발효물에 의한 Clostridium difficile의 생육 제어)

  • Lee, Young-Duck;Moon, Gi-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • In this study, Leuconostoc mesenteroides CJNU0041 was isolated from Korean traditional food kimchi and antimicrobial activity of fermented broccoli with the isolate was tested against pathogenic Clostridium difficile. L. mesenteroides CJNU0041 showed higher glucosidase activity than other isolates. As the results of physiological properties such as pH and viable cell count during broccoli fermentation with L. mesenteroides CJNU0041, we confirmed that 48 hours was optimal fermentation time. As the results of metabolite analysis by HPLC, metabolites were changed during the fermentation. Especially, the growth of C. difficile was inhibited by the fermented broccoli. Therefore, L. mesenteroides CJNU0041 might be a candidate for improving the functionality of natural materials by lactic acid fermentation.

Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria

  • Kim, Minji;Kim, Won-Baek;Koo, Kyoung Yoon;Kim, Bo Ram;Kim, Doohyun;Lee, Seoyoun;Son, Hong Joo;Hwang, Dae Youn;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ($X_1$: 1-5%), amount of starter culture ($X_2$: 1-5%), pH ($X_3$: 4-8), and fermentation time ($X_4$: 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.

Effects of Lyophilization on Starter Cell of Rifamycin Fermentation (동결건조법이 Rifamycin 발효의 Starter Cell에 미치는 영향)

  • 이동희;조좌형;이노은
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.470-476
    • /
    • 1992
  • Upon lyophilization of Nocardia mediterranei, the effects of cryoprotectants, cell concentration and drying time on viability were examined, The data were treated by computer according to response surface analysis. As a result, the maximum value of presumed viability was 39.3% under the optimal conditions of 1l.6%(v/v) sucrose, $1.16{\times}10^{11}$(CFU/ml) cell concentration, and drying time for 6.18 hrs. We also used the starter cell of rehydrated solution after lyophilization in industrial production, obtained the fermentation pattern and the purity of rifamycin B which were the same with control (FVM) and it is possible for us to use N mediterranei as a starter cell after the storage of lyophilization for 18 months.

  • PDF

Effect of Feed Value and Fermentative Quality According to Harvesting Time of Barley and Wheat Grain Silage (수확시기에 따른 맥류 곡실발효사료의 사료가치 및 발효품질)

  • Song, Tae-Hwa;Oh, Young-Jin;Kang, Hyeon-Jong;Park, Tae-Il;Cheong, Young-Keun;Kim, Yang Kil;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • This experiment was conducted to determine the optimal harvesting time for barley and wheat grain for the production of fermented grain feeds, and to investigate their fermentation quality according to harvesting time. As a result, grain moisture content was decreased with late harvest, whereas spike weight ratio and 1000 grain weight were increased with prolonged period after heading. Grain yielding was increased with late harvesting time significantly at p<0.05. Crude protein content was increased with late harvesting time, but crude fiber content was decreased. Crude fat and ash content were slightly decreased, but not statistically significant. Comparing the effects of fermentation on feed value of winter cereal grain, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of winter cereal grain silage with late harvesting time, but decreasing the lactic acid content (p<0.05). No significant difference was found in acetic acid, and butyric acid was not detected. Considering the quantity and quality of fermentation, barley and wheat can be used for winter cereal grain silage when they were harvested at 35 days and 40-45 days after heading, respectively.