• Title/Summary/Keyword: optimal duration

Search Result 499, Processing Time 0.027 seconds

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

A Production-Installation Simulation Model of Free-Form Concrete Panels

  • Lim, Jeeyoung;Lee, Donghoon;Na, Youngju;Lim, Chaeyeon;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • Demand on free-form buildings is gradually increasing, yet owing to the difficulty of production-installation work, several problems occur in the construction phase upon construction of a building, including the increased cost and construction duration, and reduced constructibility. To solve these problems, a techonology to produce FCP using a CNC(Computerized Numeric Control) machine is developed. The technology is that the information of designed free-form buildings to the CNC machine is transferred, and the transferred information is used for RTM(Rod-Type Mold, the mold shaped by back-up rods) and PCM(Phase Change Material) shaping, and the shaped RTM and PCM have the role of molds to produce FCP. Construction duration and project cost are limited in building sites, so the efficiency of processes like production-installation of FCP for application of the technology is significant. Since it is almost impossible to change the production-installation process at the construction phase when they are established, process should be deliberately decided. Therefore, the purpose of the study is to propose a production-installation simulation model of free-form concrete panels, in aspect of PCM. This paper is establishing the process for production-installation of FCP, estimating time required by each construction type and proposing a time simulation model that changes according to various constraints based on the analyses. With the time simulation model, it will be possible to build a cost model and to review the optimal construction duration and project cost.

  • PDF

Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle (도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정)

  • Lee, Okjeong;Choi, Jeonghyeon;Lee, Jeonghoon;Kim, Sangdan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • In this study, a design strategy is proposed to restore the distorted urban water cycle to the natural water cycle through the LID facility. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. A part of the Noksan National Industrial Complex in Busan was selected as the study area and EPA SWMM was constructed to simulate long-term stormwater for various land use scenarios and LID facility design capacity. In the case that the study area was assumed to be a forest area or an agricultural area before urban development, it was found that it was necessary to allocate 7.3% or 5.5% of the impervious area to the area of the bio-retention in order for the flow duration curve to remain the same as before urban development. As a result of the sensitivity analysis of the bio-retention design capacity according to regional rainfall characteristics, the design capacity of 3.8~5.5% of impervious area is needed for the development of agriculture area. Therefore, it can be seen that the optimum capacity can be significantly different according to regional rainfall characteristics. On the other hand, as a result of analyzing the sensitivity of the design capacity according to the variation of the depth of each layer constituting the bio-retention and the size of contributing catchment area, the sensitivity of the optimal design capacity with respect to the design specifications of the bio-retention and the size of contributing catchment area was not significant.

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (III) - On the Method of LH-moments and GIS Techniques - (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정 (III) - LH-모멘트법과 GIS 기법을 중심으로 -)

  • 이순혁;박종화;류경식;지호근;신용희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.41-53
    • /
    • 2002
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. According to the regions and consecutive durations, optimal design rainfalls were derived by the regional frequency analysis for L-moment in the second report of this project. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized extreme value (GEV) distribution among applied distributions. regional and at-site parameters of the GEV distribution were estimated by the linear combination of the higher probability weighted moments, LH-moment. Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. Relative efficiency (RE) for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

A Study on the Optimal Number of Air Tanker for Patrol Operations (초계작전을 위한 공중급유기 적정 대수 산정 연구)

  • Park, Sehoon;Chung, Ui-Chang;Chung, Je-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Air refueling is expected to increase the efficiency of the air force operations. This follows from the introduction of air refueling aircraft, which should to increase operational time by increasing the range and duration of fighter jets. Despite the effectiveness of the air refueling air crafts, the astronomical costs of adapting the air tankers call for careful discussions on whether to acquire any air craft and if so, how many. However there is no academic study on the subject to our knowledge. Thus, we use the ABM(Agent Based Modeling) technique to calculate the optimal number of air tankers during patrol operation. We have enhanced the reliability of the simulation by entering the specifications of the current aircraft operated by the Korean Air Force. As an optimization tool for determining the optimal number of counts, we use OptQuest built into the simulation tools and show that the optimal number of air tanker is 4.

A study on the normal project duration development for the construction of multi-utility tunnel in the existing city (기존시가지의 공동구 건설을 위한 표준공기 산정에 대한 연구)

  • Lee, Seong-Won;Lee, Pil-Yoon;Byun, Yo-Seph;Cho, Choong-Yeun;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.677-685
    • /
    • 2018
  • In construction, schedule management is the basic but important step, for the effective schedule management, the preparation of the reasonable schedule table should be prioritized. In the design stage, the optimal construction period can be selected through comparison of various conditions and construction methods considering weather conditions and site characteristics. But, At the planning phase, it is difficult to select the effective method and calculate the proper construction period by the basic data(D/B) analysis. In this paper, the construction method considering characteristics of each type and conditions of existing city was selected. For the reasonable duration calculation, we analyzed the unit schedule for RC method for open type and Shield TBM method for tunnel type. The normal project duration of construction assuming of 1,200m of extension and every 200m of ventilation was prepared by integrating each unit schedule. It was analyzed that it took 893 days for the open type and 616 days for the tunnel type. The results of this study will help to make type selection and normal project duration more easily in the planning phase. If it is linked to the design stage, it will be easy to estimate the process and construction cost.

The Optimal Time of Fiberoptic Bronchoscopy to Locate the Bleeding Site in Patients with Hemoptysis (객혈의 병소를 확인하기 위한 굴곡성 기관지경 검사의 시행시기)

  • Cheon, Ho-Gi;Kim, Jung-Baek;Yoon, Ki-Heon;Yoo, Jee-Hong;Kang, Hong-Mo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.20-25
    • /
    • 1994
  • Background: Hemoptysis is a common clinical symptom, responsible for 11% of admission to the hospital chest service. Correct diagnosis, accurate localization of the bleeding source and proper management are imperative to reduce the risk of massive hemoptysis. We performed the study to define the optimal time of fiberoptic bronchoscopy in 63 patients with hemoptysis admitted to Kyung Hee University Hospital between Aug 1989 and Aug 1992. Methods: Retrospective analysis of medical records concerning the cause, amount, duration of hemoptysis and the timing of fiberoptic bronchoscopy in 63(M:F=36:27) patients. Results: 1) The main causes of hemoptysis were pulmonary tuberculosis(52.4%) bronchiectasis(27.0%) and lung cancer(11.1%). 2) The bleeding sites were localized in 26 patients(41.3%). 3) The rates of localization of bleeding site were not related to the amount and duration of hemoptysis. 4) The rates of localization of bleeding site were 61.8%(21/34) during hemoptysis, 18.2%(22) within 24hr after resolution of hemoptysis, 14.3%(1/7) thereafter. Conclusion : Early bronchoscopy, especially during hemoptysis may show higher rates of successful localization than delayed bronchoscopy.

  • PDF

A Methodology for Determining the Optimal Durations of the Use of Contaminated Crops As Feedstuffs of Cattle Following a Nuclear Accident (원자력 사고후 가축 사료로서 오염 농작물 이용에 대한 최적기간 결정 방법론)

  • Hwang, Won-Tae;Han, Moon-Hee;Choi, Yong-Ho;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.65-72
    • /
    • 1999
  • A methodology for determining the optimal durations of the use of contaminated crops as feedstuffs of cattle was designed based on the cost-benefit analysis method. The results of application for pigs, an omnivorous cattle, were discussed for the hypothetical deposition of radionuclides on August 15 when a number of crops are fully developed in Korean agricultural conditions. For investigating the relative cost-effectiveness of the use of contaminated crops as feedstuffs, the net benefit was compared with the case of the direct disposal of contaminated crops. The time-dependent radionuclide concentration in crops after the deposition was predicted using a dynamic food chain model DYNACON. The net benefit from the actions was quantitatively evaluated in terms of cost equivalent of doses and monetary costs of implementing the action. It depended on a number of factors such as radionuclides, variety of crops supplied as feedstuffs and duration of the actions. The use of contaminated crops as feedstuffs was more cost effective for $^{90}Sr\;or\;^{131}I$ deposition than for $^{137}Cs$ deposition.

  • PDF

Optimization of supplementation with maltodextrin and grape seed extract for improving quality of shredded Korean cabbage (Brassica rapaL. ssp. Pekinensis) during salting process (절임 공정 중 절단 배추의 품질 향상을 위한 maltodextrin과 grape seed extract 첨가조건 최적화)

  • Park, Sang-Un;Choi, Eun Ji;Chung, Young Bae;Han, Eung Soo;Park, Hae Woong;Chun, Ho Hyun
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2016
  • The aim of this study was to develop a new salting condition that included added maltodextrin (MD) and grape seed extract (GSE) to ensure the microbiological safety and quality of salted shredded Korean cabbage. Response surface methodology (RSM) was used to analyze the effects of four independent variables (NaCl concentration, salting duration, MD concentration, and GSE concentration). The following response variables were evaluated: reduction in total aerobic bacteria, yeast, and mold counts; weight loss and salt content; and taste, texture, and overall acceptability of salted shredded Korean cabbage. The optimal salting conditions include a combination of 10.09~10.32% NaCl, 9.45~10.00% MD, and 234~300 ppm GSE in a ternary salting solution and a salting duration of 5.68~5.94 hr. This optimal combination reduced total aerobic bacterial and yeast/molds counts by 3.33 and 1.45 log CFU/g, respectively, while maintaining high sensory scores for taste, texture, and overall acceptability of the salted shredded Korean cabbage. In addition, the optimal conditions yielded more acceptable weight loss and salt content characteristics. The results suggest that use of the optimized combination of salting conditions can improve the microbiological safety and quality of salted shredded Korean cabbage used for commercial kimchi production.

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF