• Title/Summary/Keyword: optimal detection distance

Search Result 76, Processing Time 0.027 seconds

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Vehicle Detection Using Optimal Features for Adaboost (Adaboost 최적 특징점을 이용한 차량 검출)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Kim, Jae-Ho;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1129-1135
    • /
    • 2013
  • A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

Cellular Parallel Processing Networks-based Dynamic Programming Design and Fast Road Boundary Detection for Autonomous Vehicle (셀룰라 병렬처리 회로망에 의한 동적계획법 설계와 자율주행 자동차를 위한 도로 윤곽 검출)

  • 홍승완;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.465-472
    • /
    • 2004
  • Analog CPPN-based optimal road boundary detection algorithm for autonomous vehicle is proposed. The CPPN is a massively connected analog parallel array processor. In the paper, the dynamic programming which is an efficient algorithm to find the optimal path is implemented with the CPPN algorithm. If the image of road-boundary information is utilized as an inter-cell distance, and goals and start lines are positioned at the top and the bottom of the image, respectively, the optimal path finding algorithm can be exploited for optimal road boundary detection. By virtue of the parallel and analog processing of the CPPN and the optimal solution of the dynamic programming, the proposed road boundary detection algorithm is expected to have very high speed and robust processing if it is implemented into circuits. The proposed road boundary algorithm is described and simulation results are reported.

Algorithm for Pairwise Collision Detection and Avoidace in 3-D (3차원 일대일 충돌 감지 및 회피 알리고리듬)

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.996-1002
    • /
    • 2008
  • This paper presents the development of a real-time algorithm for collision detection, collision avoidance and guidance to way-point. Three-dimensional point-mass aircraft models are used. For collision detection, time of closest point of approach(CPA) and distance at CPA are compared to threshold values. For collision avoidance, optimal acceleration input which maximizes the terminal relative distance is calculated based on optimal control theory. For guidance to way-point, proportional navigation guidance, the well-known method, is used. Two scenarios of encounter situation are illustrated to validate performance of proposed algorithm.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

Ordinal Measure of DCT Coefficients for Image Correspondence and Its Application to Copy Detection

  • Changick Kim
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.168-180
    • /
    • 2002
  • This paper proposes a novel method to detect unauthorized copies of digital images. This copy detection scheme can be used as either an alternative approach or a complementary approach to watermarking. A test image is reduced to 8$\times$8 sub-image by intensity averaging, and the AC coefficients of its discrete cosine transform (DCT) are used to compute distance from those generated from the query image, of which a user wants to find copies. Copies may be Processed to avoid copy detection or enhance image quality. We show ordinal measure of DCT coefficients, which is based on relative ordering of AC magnitude values and using distance metrics between two rank permutations, are robust to various modifications of the original image. The optimal threshold selection scheme using the maximum a posteriori (MAP) criterion is also addressed.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

Error analysis for time-in-flight laser range finder with multiple toe amplitude modulation

  • Matsumoto-Moriyama, Masao;Mima, Kazuhiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.554-557
    • /
    • 1993
  • The error analysis for the Time-in-Flight Laser Range Finder with Multiple Tone Amplitude Modulation relevant to the phase detection error is made. The distance can be estimated to solve the formulate which express the relationship between the absolute distance from the range finder to the object and the wavenumbers and the phases of the modulated waves by the optimization technique. The main cause of the estimation error can be considered as the phase detection error induced from the amplitude modulator and the phase detector. To clarify the phase detection error and the optimal amplitude frequency set, the numerical analysis are made.

  • PDF

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

Distance Sensitive AdaBoost using Distance Weight Function

  • Lee, Won-Ju;Cheon, Min-Kyu;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.143-148
    • /
    • 2012
  • This paper proposes a new method to improve performance of AdaBoost by using a distance weight function to increase the accuracy of its machine learning processes. The proposed distance weight algorithm improves classification in areas where the original binary classifier is weak. This paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Distance Sensitive AdaBoost in a simulation experiment of pedestrian detection.