• Title/Summary/Keyword: optimal design domain

Search Result 238, Processing Time 0.027 seconds

A controller design method of switching regulator satisfying time-domain specifications (시간 영역에서의 성능 사양 만족을 위한 스위칭 직류 변환기의 제어기 설계)

  • 고정호;권봉환;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.576-579
    • /
    • 1986
  • In this paper, a design method of an optimal output PIM(Proportional-Integral-Measurable) controller is presented so that the closed-loop output response of the switching regulator closely match to that of ideal model system satisfying the time domain specifications. The computer simulation for a design example is given to show the usefulness of the proposed technique.

  • PDF

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.

Frequency-Domain Properties of Digital Optimal stems Servosystem Counting Computation Delays (연산시간을 고려한 디지털 취적서보계의 주파수 특성)

  • 이동철;하주식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.937-944
    • /
    • 1991
  • In digital controller design, the delays in the controller should be taken into consideration when the computation time of the processor is not negligibale compared with sampling time. Recently, Mita has proposed a digital optimal servosystem taking account of the delays in the controller. In this paper, robust stability and diturbance rejection properties of this optimal servosystej are analyzed in the frequency-domain. The well-known asymptotic properties of the optimal regulators with respect to the weighting matrices of the cost functions are successfully utilized to show that the influence of the delays in the controller are drastic for certain choice of the cost function Illustrative numerical examples are presented.

  • PDF

PID Controller Tuning Using LQR method - Time domain approach (LQR방법에 의한 PID제어기 동조 - 시간영역에서의 접근)

  • Yang, Ji-Hoon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.3-6
    • /
    • 2001
  • This paper presents optimal robust PID controller design method for second order systems to satisfy the design specifications in time domain. The parameters of PID controller are determinated by the weighting factors Q and R of cost function. It is suggested that the selection of Q and R matrix can be determinated by its relationship with the natural frequency of ITAE criterion.

  • PDF

Optimal Gator-filter Design for Multiple Texture Image Segmentation (다중 텍스쳐 영상 분할을 위한 최적 가버필터의 설계)

  • Lee, U-Beom;Kim, Uk-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.11-22
    • /
    • 2002
  • The design of optimal filter yielding optimal texture feature separation is a most effective technique in many torture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gator filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Optimal Design of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 설계인자 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to predict its performance approximately with respect to design parameters over design domain. Design parameters are inflow and outflow angle of the working fluid and horizontal and vertical location of inlet and outlet. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. A JF factor was used as an evaluation characteristic value to consider the heat transfer and the pressure drop simultaneously. The JF factor of the optimum model, compared to that of the base model, was increased by about 5.3%.

  • PDF