• Title/Summary/Keyword: optimal dampers

Search Result 184, Processing Time 0.022 seconds

Design of Lead-Shear Damper for Stay Cables (사장교 케이블 진동감소용 납-전단 댐퍼의 설계)

  • 안상섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.490-495
    • /
    • 2000
  • This paper presents the dynamic behavior of stay cable with Lead-Shear damper( LSD) near the support. This kind of research about the dynamic behavior of LSD is essential to design LSD in order to mitigate the ambient vibration of stay cable. The hysteresis curve of LSD was assumed to be perfect elasto-plastic behavior based on the real hysteretic behavior of such lead-based dampers. Mechanical model of LSD was equivalent Kelvin model and sag effect of stay cable was considered. Yielding force (also referred as size) of LSD was selected as a design parameter. Effects of tension of stay cable and installation point of LSD were studied. It was found that optimal size of LSD exists for each case of stay cable.

  • PDF

Integrated Optimal Design of Structure with Viscoelastic Dampers by Minimizing Life-Cycle Cost (생애주기비용 최소화에 의한 점탄성감쇠기장착 구조물의 통합최적설계)

  • 박관순;고현무;함대기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.467-474
    • /
    • 2002
  • 이 연구에서는 점탄성감쇠기가 설치된 구조시스템의 통합최적설계 방법을 제시하였다. 최적화를 위한 목적함수로는 구조시스템이 유발하는 사회적 비용을 의미하는 총 생애주기비용을 사용함으로써, 구조제어 시스템의 성능에 기반한 경제적 유익을 극대화하도록 하였다. 구조물의 층별 기둥 강성 및 점탄성감쇠기의 사용량 등을 설계변수로 하여 생애주기비용함수를 정의하였으며, 통합시스템을 동시에 최적화하기위한 방법으로 유전자 알고리즘을 적용하였다. 동일한 초기비용을 사용하며 통합최적설계를 수행하지 않은 설계를 통해 얻어진 지진응답과 비교한 결과, 제안하는 통합 설계방법은 보다 우수한 진동제어효과를 발휘하는 것으로 나타났다.

  • PDF

Optimal Design of Smart Outrigger Damper for Multiple Control of Wind and Seismic Responses (풍응답과 지진응답의 다중제어를 위한 스마트 아웃리거 댐퍼의 최적설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.79-88
    • /
    • 2016
  • An outrigger damper system has been proposed to reduce dynamic responses of tall buildings. In previous studies, an outrigger damper system was optimally designed to decrease a wind-induced or earthquake-induced dynamic response. When an outrigger damper system is optimally designed for wind excitation, its control performance for seismic excitation deteriorates. Therefore, a smart outrigger damper system is proposed in this study to make a control system that can simultaneously reduce both wind and seismic responses. A smart outrigger system is made up of MR (Magnetorheological) dampers. A fuzzy logic control algorithm (FLC) was used to generate command voltages sent for smart outrigger damper system and the FLC was optimized by genetic algorithm. This study shows that the smart outrigger system can provide good control performance for reduction of both wind and earthquake responses compared to the general outrigger system.

Power System Oscillations Damping by Robust Decentralized DFIG Wind Turbines

  • Surinkaew, Tossaporn;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.487-495
    • /
    • 2015
  • This paper proposes a new robust decentralized power oscillation dampers (POD) design of doubly-fed induction generator (DFIG) wind turbine for damping of low frequency electromechanical oscillations in an interconnected power system. The POD structure is based on the practical $2^{nd}$-order lead/lag compensator with single input. Without exact mathematical model, the inverse output multiplicative perturbation is applied to represent system uncertainties such as system parameters variation, various loading conditions etc. The parameters optimization of decentralized PODs is carried out so that the stabilizing performance and robust stability margin against system uncertainties are guaranteed. The improved firefly algorithm is applied to tune the optimal POD parameters automatically. Simulation study in two-area four-machine interconnected system shows that the proposed robust POD is much superior to the conventional POD in terms of stabilizing effect and robustness.

Design of Direct-Shear Mode MR Damper (전단 모드형 자성유체댐퍼의 설계)

  • Kim, Hae-Lan;Lee, Young-Shin;Lee, Eun-Yup;Lee, Gyu-Seop;Oh, Boo-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.626-631
    • /
    • 2007
  • MR(Magneto-rheological) fluid is smart material that can be changed viscosity by controlling the magnetic field. MR damper with MR fluid can control damping force. It can be used extensively many engineering structures for reducing the effect of dynamic external disturbances. There are three kinds of MR dampers, such as valve mode, direct-shear mode and squeeze mode. In this study, design process of direct-shear mode MR damper with the MR fluid gap was developed. The parameters that used in the direct-shear mode MR damper Informed from the experiment of valve mode MR damper of Lord company. Magnetic analysis with finite element method was performed to find the optimal annular gap.

  • PDF

Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers (마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성)

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

Semi-active Control of Tall Building Subjected to Wind Loads Using Magneto-rheological Fluid Dampers (자기유번유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.403-410
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 3차 ASCE benchma가 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다. 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유사한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 시스템임을 확인할 수 있었다.

  • PDF

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

Semi-Active Control of Wind-Induced Vibration of Tall Building Using Magneto-Rheological Dampers (자기유변유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.72-77
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 ASCE benchmark 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩 내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다, 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유상한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 제어 시스템임을 확인할 수 있었다.

  • PDF