• Title/Summary/Keyword: optical transmittance

Search Result 1,483, Processing Time 0.037 seconds

Physicochemical Properties of Several Korean Yam Starches (한국산 마전분의 이화학적 특성)

  • Kim, Wha-Sun;Kim, Sang-Soon;Park, Yong-Kon;Seog, Ho-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.554-560
    • /
    • 1991
  • The physicochemical properties of Korean yam starches (D. aimadoimo, D. batatas and D. japonica) were investigated. The mean granular size of starches were 23.5 μm for D. aimadoimo, 23.9 μm for D. batatas and 18.2 μm for D. japonica. Amylose content, blue value and water binding capacity was $29{\sim}33%,\;0.42{\sim}0.51%\;and\;109.9{\sim}118.3%$, respectively. The optical transmittance of 0.3% (dry basis) yam starch suspensions were increased at $70{\sim}75^{\circ}C$ and D. japonica showed typical two-step transmittance curve. The swelling power and solubility patterns increased over $60^{\circ}C$, and D. aimadoimo was the highest values. Amylogram patterns of 5% (dry basis) yam starch suspensions, determined by Brabender amylograph, were similar to that of yam flours and the viscosity of D. aimadoimo had 630 BU, which was about 5 times higher than 130 BU for D. batatas and D. japonica. Observation under scanning electron microscope lefted marks of resistance to glucoamylase because these surfaces were similar to the natural granules. In rates of solubiliazation by dimethyl sulfoxide, D. aimadoimo showed the highest value. (3-Amylolysis limits of yam starches and their amylose were $71.8%{\sim}75.5%\;and\;90.2{\sim}92.1%$, respectively. Gel filtration patterns of debranched amylopectin by pullulanase were divided into 3 peaks. The weight ratios of peak III to peak II in yam starches were $2.15%{\sim}2.42%$.

  • PDF

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Characterization of transparent Sb-doped $SnO_2$ conducting films by XPS analysis (XPS를 이용한 Sb-doped $SnO_2$ 투명전도막의 특성 분석)

  • 임태영;김창열;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.254-259
    • /
    • 2003
  • In the fabrication process of transparent conducting thin films of the ATO (antimony-doped tin oxide) on a soda lime glass substrate by a sol-gel dip coating method, the effects of the $SiO_2$ buffer layer formed on the substrate and $N_2$ annealing treatment were investigated by XPS (X-ray photoelectron spectroscopy) analysis. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin films which were deposited on $SiO_2$ buffer layer/soda lime glass and then annealed under nitrogen atmosphere were 84 % and $5.0\times 10^{-3}\Omega \textrm{cm}$ respectively. The XPS analysis confirmed that a $SiO_2$ buffer layer inhibited Na ion diffusion from the substrate, resulting in prohibiting the formation of a secondary phase such as $Na_2SnO_3$ and SnO and increasing Sb ion concentration and ratio of $Sb^{5+}/Sb^{3+}$ in the film. And it was also found that $N_2$ annealing treatment leads to the reduction of $Sn^{4+}$as well as $Sb^{5+}$ however the reduction of $Sn^{4+}$ is more effective and therefore consequently results in decrease in the electrical resistivity to produce an excellent electrical properties of the film.

Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의한 대면적 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막제조 및 물리적 특성 연구)

  • Son, Young Ho;Choi, Seung Hoon;Park, Joong Jin;Jung, Myoung Hyo;Hur, Youngjune;Kim, In Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • In this study, we studied the properties of ZnO(Al) and ZnO(AlGa) thin film according to film thickness deposited on SLG by In-line magnetron sputtering system. XRD, FESEM, 4-point probe, Hall measurement system and UV/Vis-NIR spectrophotometer were employed to analyze the properties of ZnO(Al) and ZnO(AlGa) thin film. The all films exhibited (002) preferential orientation with clear peak shape and high intensity. The carrier concentration and Hall mobility of ZnO(Al) and ZnO(AlGa) thin film were improved with increasing thickness. The resistivity of both films decreased when the film thickness was raised from 500 nm to 1,450 nm. And then relatively the resistivity of ZnO(AlGa) film was lower than that of ZnO(Al) film. The transmittance of the films decreased with increasing film thickness but all films exhibited optical transmittances of over 83.3% in the visible region.

Fabrication and Properties of D-Glass Fiber with Low Dielectric Constant (저유전율을 가지는 D-Glass Fiber의 제조 및 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at $1650^{\circ}C$ for 2 hrs, and then annealed at $521{\pm}10^{\circ}C$ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1368^{\circ}C$ to $1460^{\circ}C$, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.

Semi-continuous Measurements of PM2.5 OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes (준실시간 연속관측을 통한 제주 고산 PM2.5 OC와 EC의 계절별 사례별 특성)

  • Han, Jihyun;Bahng, Byungjo;Lee, Meehye;Yoon, Soon-Chang;Kim, Sang-Woo;Chang, Limseok;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.237-250
    • /
    • 2013
  • At Gosan ABC superstation in Jeju Island, we measured organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ from October 2009 to June 2010 using a Sunset Laboratory Model-4 Semi-Continuous OC/EC Field Analyzer. It employs TOT (Thermal-Optical-Transmittance) method with NIOSH 5040 protocol and enables to continuously monitor OC and EC concentrations with 1-hour time resolution. The mean values of OC and EC for the entire period of measurements were $2.1{\pm}1.4{\mu}g/m^3$ and $0.7{\pm}0.6{\mu}g/m^3$, respectively. The OC/EC ratio was 3 and EC accounted $25{\pm}2.1%$ of total carbon (TC, TC=OC+EC). Although OC and EC showed similar trend in seasonal variation, the ratio of OC to EC was the highest in early summer when temperature was the highest and the air was affected by biomass burning in the southern part of China. In winter, the high OC and EC concentrations were likely influenced by increased coal combustion from residential heating. The high OC and EC concentrations were observed during events such as haze, dust, and the combination of the two. During the haze events, OC and EC were enhanced with increase in $PM_{10}$, $PM_{2.5}$, $SO_2$, and $NO_2$ with broad maxima. When dust occurred, both OC and EC started decreasing after reaching their maxima a couple of hours before $PM_{10}$ maximum. The peak separation of carbonaceous species and aerosol masses with time was more noticeable when haze event was followed by dust plume. These results confirm that OC and EC are key components of haze occurring in the study region.

Comparison of Physicochemical Properties of Akibare and Milyang 23 Rice Starch (아끼바레 및 밀양 23호 쌀전분의 이화학적 성질비교)

  • Chung, Hye-Min;Ahn, Seung-Yo;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.67-74
    • /
    • 1982
  • Morphology, physicochemical properties, pasting properties in the presence of various anionic ions and aging of gels of Akibare (Japoica type) and Milyang 23 (Indica type) rice starch were studied, Both starches. were polygonal with length in the range of $3{\sim}6{\mu}m$. Starch granules of Akibare were somewhat smaller than those of Milyang 23. X-ray diffraction study demonstrated that peak shape and intensity were significantly different between the two starches. Akibare and Milyang 23 rice starch had amylose content of 18.5 and 19.5% and water binding capacity of 106 and 100%, respectively. Milyang 23 rice starch had a higher swelling power than Akibare starch. A relationship between percent solubility and swelling power implied that bonding forces within the granules of the both starches were different. The optical transmittance of 0.1% suspension of the two starches increased rapidly from $60^{\circ}C$. In the range of $60{\sim}90^{\circ}C$, the two starches showed a single gelatinization pattern. Amylograms of the two starches in the presence of various anionic ions showed that pasting temperature and peak temperature were progressively increased in the order of SCN-${SO_4}^=$. SCN- and I- ions increased the peak height of Akibare rice starch while only SCN- ion was effective for Milyang 23 rice starch. There were no differences in the rates of retrogradation of 45% gels of the two starches stored at $21^{\circ}C$.

  • PDF

Physicochemical Properties of Yullmoo (Coix lachryma-jobi var. mayuen stapf.) and Yeomjoo (Coix lachryma-jobi L.) Starches (율무와 염주 전분의 이화학적 특성)

  • Woo, Ja-Won;Yoon, Gae-Soon;Kim, Hyong-Soo
    • Applied Biological Chemistry
    • /
    • v.28 no.1
    • /
    • pp.19-27
    • /
    • 1985
  • The physicochemical properties of starch isolated from Yullmoo (Coix lachrymajobi var. mayuen stapf.) and Yeomjoo (Coix lachryma-jobi L.) were investigated. The average diameters of starch granules of Yullmoo and Yeomjoo were 12.0 microns, both of all, and the shape of these starch granules were hexagon, octagon and round. X-ray diffraction patterns of two samples were A-types and amylose contents of Yullmoo and Yeomjoo starch were 0% and 23%, respectively, iodine affinities of these were 0.08% and 4.2%, respectively, blue values and alkali numbers of these were 0.13 and 0.43, 2.4 and 7.2, and raising power of these were 280 and 20, respectively. Yullmoo starch had higher swelling power than Yeomjoo starch. The increase in optical transmittance of 0.1% suspensions of Yullmoo and Yeomjoo starches occurred at $60^{\circ}C$ and continued up to $75^{\circ}C$ for Yullmoo, $85^{\circ}C$ for Yeomjoo. Amylogram data on 5% of Yullmoo and Yeomjoo starch suspensions showed that gelatinization temperatures and maximum peak heights of Yullmoo and Yeomjoo were $68.5^{\circ}C\;and\;78^{\circ}C$, 920 and 310 B.U., respectiyely. Intrinsic viscosities of Yullmoo and Yeomjoo starches were 1.49 and 1.77, respectively, and interaction coefficients of the two starches were 0.57 and 0.56, respectively The extent of retrogradation determined at $2^{\circ}C$ showed that retrogradation occurred slowly with Yullmoo starch paste tut little with Yullmoo.

  • PDF

Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju (광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가)

  • Park, Seung-Shik;Yu, Geun-Hye;Lee, Sang-Il;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF