• Title/Summary/Keyword: optical transceiver

Search Result 84, Processing Time 0.029 seconds

The Research on SMSR Yield Improvement of the Optical Transceiver Using Modulated DFB Laser (변조된 DFB 레이저를 이용한 광 송수신기의 SMSR 수율 향상에 관한 연구)

  • Kwon, Yoon-Koo;Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2285-2290
    • /
    • 2011
  • This paper is the research on SMSR yield improvement of the optical transceiver using modulated DFB laser. In general, the wavelength of DFB laser optical transceiver are 1310, 1490 and 1550 nm. Usually SMSR in modulated DFB is difficult to improve as low as 30 dB because of high slop efficiency trade off. In modulation condition, we studied SMSR improvement according to adjust bias current, extinction ratio and optical line terminal receiver sensitivity. As our test results, we can found a method how to improve SMSR for optical transceiver for long distance.

A Study on the development of a burst-mode optical transceiver for optical access networks (광 가입자망을 위한 버스트 모드 광 송수신기 개발에 관한 연구)

  • Lee, Hyuek-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1346-1355
    • /
    • 2005
  • Recently, the development of passive optical networks (PON) for FTTH (Fiber-To-The-Home) have been actively conducted. In PON, a burst-mode transceiver is one of key modules. In this paper, we have made the protype module of a 155.52 Mpbs optical burst-mode transceiver with commercially available chips and then have measured the performance. Also, a new method of burst-mode clock recovery have been proposed. The burst-mode clock recovery implemented by using CPLD(Complex Programmable Logic Device) has coupled with the above burst-mode transceiver and has been tasted.

Optical Transceiver Module for Next-generation Automotive Optical Network, MOST1000 (차세대 자동차 광네트워크 MOST1000 용 광트랜시버 모듈)

  • Kim, Gye Won;Hwang, Sung Hwan;Lee, Woo-Jin;Kim, Myoung Jin;Jung, Eun Joo;An, Jong Bea;Kim, Jin Hyeok;Moon, Jong Ha;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.196-200
    • /
    • 2013
  • Heretofore, it was enough that most of optical transceiver modules for automotive networks have the performance of data rate from 10 Mbps to 150 Mbps. As the required data rate in automotive infotainment systems has recently been increasing, the development of a new optical transceiver having high speed data rate over 1Gbps is now required. Therefore, we suggested a next-generation bi-directional optical transceiver module using vertical cavity surface emitting laser technology and plastic clad fiber technology, for the next-generation automotive optical network, MOST1000. We fabricated the high-speed and compact optical transceiver having 1 Gbps data rate and -22 dBm sensitivity satisfying bit error rate $10^{-12}$.

Embedded Mobile Automatic System Architecture and Interface for the Telematics (텔레매틱스를 위한 임베디드 이동체 자동화 시스템 구조 및 인터페이스)

  • Han Cheol-Min;Kim Nam-Hee;Cho Hae-Sung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.443-447
    • /
    • 2005
  • EMAST(Embedded Mobile Automatic System for Telematics) is implemented in SoC using the CAN and ARM Processor. For the general usage, EMAST must satisfy the two condition. First, Mobile internal interface is to be designed to support Differential Transceiver, Optical Transceiver and Wireless Transceiver Second, it should be supporting the interface between terminals using EMAST and telematics networks. In this paper, we propose EMAST structure and the efficient interface structure between EMAST and each mobile units.

  • PDF

Implementation of 4-Wavelength Optical Transceiver with Excellent Transfer/Isolation Characteristics (높은 채널 분리 특성을 가지는 1550nm 대역 4 파장 광모듈 및 광중계기 제작)

  • 이유종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.787-790
    • /
    • 2003
  • A 4-wavelength optical transceiver system is designed and implemented by using 4 OADMs (optical add-drop multiplexers), WDMs, and optical transceivers. In this new system, the wavelengths of 1510 nm and 1530 nm are used for upload and download signals, respectively, as well as the wavelengths of 1550 nm and 1310 nm which have been utilized in a 2-wavelength optical transceiver systems. The 4-wavelength optical module shows very encouraging pass characteristics of about - 5 dB and isolation characteristics of less than -40 dB, which is configured with two OADMs, 4 couplers, and WDM couplers by fusion splicing. Noise figure (NF) of the one-stage balanced amplifier designed and fabricated for receiver module is 0.38 dB and the amplifying gain is 14.2 dB. S$_{11}$, S$_{22}$ and input, output VSWR are -28.81 dB, -32.08 dB, 1.05 : 1, 1.08 : 1, respectively.y.

  • PDF

Design of Core Chip for 3.1Gb/s VCSEL Driver in 0.18㎛ CMOS (0.18㎛ CMOS 3.1Gb/s VCSEL Driver 코아 칩 설계)

  • Yang, Choong-Reol;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.88-95
    • /
    • 2013
  • We propose a novel driver circuit design using $0.18{\mu}m$ CMOS process technology that drives a 1550 nm high-speed VCSEL used in optical transceiver. We report a distinct improvement in bandwidth, voltage gain and eye diagram at 3.1Gb/s data rate in comparison with existing topology. In this paper, the design and layout of a 3.1Gb/s VCSEL driver for optical transceiver having arrayed multi-channel of integrating module is confirmed.

Investigation of visible light communication transceiver applicable to both of illumination and wireless communication (조명 및 무선통신이 동시에 가능한 가시광 송수신기에 관한 연구)

  • Song, Seok-Su;Kong, Young-Sik;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.219-226
    • /
    • 2012
  • We investigated the performance of a visible light communication (VLC) transceiver applicable to both of illumination and wireless communication. we considered the visibility of VLC, the easy connection for wireless communication and high-speed transmission and implemented VLC transceiver based on edge-emitting laser diode and silicon photodiode. The proposed VLC transceiver is designated to operate in a full duplex mode at high speed of 120 Mbit/s. The shielding method that is employed as a means to reduce the light cross coupling effect inside the VLC transceiver is proposed and its performance is experimentally measured. We also applied optical antenna to have the larger angle of field of view (FOV) to novel structure of VLC transceiver and examined and analyzed their bit error rate performance, photometric result with respect to the transmission distance, the coverage range and the tilt degree as transmission link characteristic between two transceivers without optical antenna and with optical antenna.

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.