• Title/Summary/Keyword: optical path

Search Result 494, Processing Time 0.027 seconds

Highly Stable RF Transfer over a Fiber Network by Fiber-induced Phase Noise Cancellation (위상잡음 제거에 의한 광섬유망에서의 높은 안정도의 RF 전송)

  • Lee, Won-Kyu;Yee, Dae-Su;Kim, Young-Beom;Kwon, Taeg-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.514-518
    • /
    • 2006
  • We have transferred highly stable 100 MHz RF through a 23 km fiber network. The fiber-induced phase noise due to the vibration and the temperature fluctuation in the optical path is detected and is compensated by configuring a noise-canceling servo. The transfer instability was $6{\times}10^{14}$ at 1 s of averaging time and $2{\times}10^{-17}$ at 10000 s of averaging time. The single sideband phase noise was greatly reduced by more than 20 dB below the Fourier frequency of 1 kHz. The transferred RF has nearly the same stability as the original reference frequency.

A Channel Estimation Method for Multipath Feedback Interference Signal Cancellation of RF Repeaters (RF 중계기의 다중 궤환 간섭 신호 제거를 위한 채널 추정 방식)

  • Lee, Sang-Dae;Park, Jin;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.98-106
    • /
    • 2008
  • To reduce the outage probability and to increase the transmission capacity, the importance of repeaters in cellular systems keeps increasing. Unlike optical repeaters which require wireline connections, RF repeaters are easy to install, have low limitations in location and also have a reduced operational expense such as the optical fiber maintenance cost. On the other hand, RF repeaters suffer the interference due to the feedback signals between the transmitter and receiver antennas, hence require an extra interference cancellation method when the amount of the feedback signal reduction by using the shielding is not sufficient. In this paper, a channel estimation method for two-path feedback interference signals in the ICS (Interference Cancellation System) repeaters using baseband signal processing is proposed and its performance is evaluated. When compared with the conventional method which estimates each multipath individually, the proposed method achieves 10 dB performance gain in terms of the normalized mean-squared-error.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Object Detection and Optical Character Recognition for Mobile-based Air Writing (모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법)

  • Kim, Tae-Il;Ko, Young-Jin;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • To provide a hand gesture interface through deep learning in mobile environments, research on the light-weighting of networks is essential for high recognition rates while at the same time preventing degradation of execution speed. This paper proposes a method of real-time recognition of written characters in the air using a finger on mobile devices through the light-weighting of deep-learning model. Based on the SSD (Single Shot Detector), which is an object detection model that utilizes MobileNet as a feature extractor, it detects index finger and generates a result text image by following fingertip path. Then, the image is sent to the server to recognize the characters based on the learned OCR model. To verify our method, 12 users tested 1,000 words using a GALAXY S10+ and recognized their finger with an average accuracy of 88.6%, indicating that recognized text was printed within 124 ms and could be used in real-time. Results of this research can be used to send simple text messages, memos, and air signatures using a finger in mobile environments.

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

A Study on Deport Maintenance Technology for Recycling Observation Window of the K1A1 Tank Commander's Primary Thermal Sight (K1A1 전차 전차장 열상조준경의 관측창 재생을 위한 창 정비기술 연구)

  • Choi, Myoungjin;Byun, Yongwan;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.89-94
    • /
    • 2019
  • K1A1 tank commander's primary thermal sight is a device that enables tank commanders to detect, identify, aim and track the target by observing targets in all directions during day, night and in situations of smokescreen and fog through $360^{\circ}$ rotation independent from the gunner's primary thermal sight and stabilizing the line of sight even under the vibrations occurring when the tank is standstill and moving. The main function of this device is to detect and process visible and thermal images and deliver the final images to the tank commander. One of the core parts to that end is the observation window (daytime/thermal image window). This core part is mounted at the entrance of the optical path for observing the target and plays the role of making visible light during the daytime and infrared light during the night pass through the target and transmitting the resultant images to the internal optical system of the tank commander's primary thermal sight. Such core parts have been selected as depot maintenance items so that they are replaced by new parts instead of being recycled when they are subjected to maintenance in most cases. That is, the military budget is wasted because such parts are replaced by new parts despite that they can be recycled for maintenance. Therefore, this study proposed a mounting tool for polishing and coating observation windows (daytime and thermal image window) using planar polishing equipment and DLC (Diamond-Like Carbon) coating equipment. In addition, this study presented an amendment (proposal) of the Depot Maintenance Work Request (DMWR) already published to verify the performance of recycled products including the establishment of inspection standards for recycling processes.

In-situ Deposition Rate Measurement System to Improve the Accuracy of the Film Formation Process (성막 공정 정밀도 향상을 위한 실시간 성막 속도 측정 시스템)

  • Somi Park;Seung-Yo Baek;Hyun-Bin Kim;Jonghee Lee;Jae-Hyun Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.383-387
    • /
    • 2023
  • The quartz crystal microbalance (QCM), commonly used in high vacuum deposition, becomes difficult to use when a thick film is deposited on the quartz, affecting the crystal's inherent vibration. In this study, a non-destructive optical measurement method was developed to measure the film's deposition rate during the in-situ film deposition process. By measuring the scattered laser intensity caused by the dimer in the parylene gas passing through the gas flow path, it was successfully confirmed that the ratio of the dimer in the parylene gas increases as the pyrolysis temperature decreases. Additionally, it was noted that the film's thickness and haze increase as the pyrolysis temperature decreases by confirming the characteristics of the visible parylene films. Through the research results, we aim to utilize the stable in-situ film deposition rate measurement system to control the precise film deposition rate of parylene films.

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;M.I. Sayyed;S. Hashim;I. Abdullahi;Mohamed Elsafi;K. Keshavamurthy;G. Jagannath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.247-256
    • /
    • 2024
  • The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

Development of Surface-mount-type Crown-shaped Lens for Reducing Glare Effect of Light-emitting Diode Light Source (LED 광원의 눈부심 현상을 감소시키기 위한 표면 실장형 CR 렌즈 개발)

  • Park, Yong Min;Bang, Hyun Chul;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This paper introduces the use of a crown-shaped (CR) lens to effectively diffuse the light from a light-emitting diode (LED) without any loss in the light intensity, in contrast to polymer-bulb-type diffusers. The diffusion lens was designed based on the Snell's law, which describes the physical path of a ray passing through the boundary between different media. CR lenses were fabricated by polydimethylsiloxane (PDMS) casting and UV-embossing processes, which used a pre-designed metal mold and UV-curable resin, respectively. Through experiments and optical evaluations, it was verified that the newly proposed CR lens not only decreased the vertical light strength and glare effect from an LED light source but also improved the diffusion characteristics while maintaining the quality of the LED's light intensity.

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.