• Title/Summary/Keyword: optical metallography

Search Result 10, Processing Time 0.02 seconds

Study on the optimum hot forming temperature and solution heat treatment temperature for the super duplex stainless steel weld (수퍼 이상 스테인리스강 용접부의 최적 열간 성형온도 및 용체화 열처리 온도에 관한 연구)

  • Ji Chun-Ho;Choi Jun-Tae;Kim Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.137-139
    • /
    • 2006
  • In order to establish the optimum hot forming temperature and solution heat treatment temperature for 25% chromium super duplex stainless steel weld, a commercial 25%Cr-10%Ni-4%Mo weld metal for super duplex stainless steel(UNS S32750) with different solution heat treatment conditions at $1100^{\circ}C,\;1050^{\circ}C,\;1025^{\circ}C\;and\;1000^{\circ}C$ for 1.5 hours has been investigated by means of optical metallography, and estimated mechanical properties. It is found that exposure to elevated temperatures at $1050^{\circ}C,\;1025^{\circ}C\;and\;1000^{\circ}C$ except $1100^{\circ}C$ brings partial decomposition of ferrite to austenite and sigma phase, which deteriorates their properties and heat treatment at $1100^{\circ}C$ shows acceptable mechanical properties.

  • PDF

Microstructures of Bonding Interfaces after Semi-Solid Brazing of Aluminum Using A357 as a Filler Metal (A357을 이용한 알루미늄 반응고 브레이징 접합 계면 특성)

  • Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.506-511
    • /
    • 2012
  • Aluminum brazing normally requires a careful control of temperature due to the small interval between brazing and melting temperatures for base materials. Unsuitable processing conditions, including brazing temperature outside admissible range, gap between brazed materials or inadequate flux feeding, can lead to joining defects. In this study, A357 was used as a filler metal for the brazing of pure aluminum base materials and brazed at temperatures in the semi-solid state. Interface microstructures with base materials were observed using optical metallography(OM) and scanning electron microcopy(SEM) with energy dispersive spectroscopy(EDS), and compared to conventional aluminum brazing.

The Austempering Transformation Behavior of Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn Steel (Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn 강의 오스템퍼링 변태 거동)

  • Shin, Sang-Yun;Lee, Do-Hoon;Kim, Seo-Eun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • The austempering transformation behavior in Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn steel is investigated. Each specimen was austenitized for 60 min at $900^{\circ}C$, and austempered at $380^{\circ}C$ for different time periods varying from 2 min to 256 min. After the austempering heat treatment, the Stage I and II evolutions are performed using optical metallography, X-ray diffraction and image analyses. Variations in the X-ray diffraction patterns and lattice parameters of the ferrite and austenite demonstrate that the residual austenite decomposes into ferrite and carbide during the Stage II evolution; moreover the amount of ferrite increases during the Stage I evolution. While the amount of austenite increases during Stage I, it dicreases during Stage II. Overall, the variations in the volume fractions of the microstructure and carbide formation in stages I and II meet high temperature austempering reaction of the ausferrite microstructure.

Effects of Si Content on the Microstructure and Processing Window of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 미세조직과 프로세싱 윈도우에 미치는 규소 함량의 영향)

  • Kim, Min-Su;Lee, Do-Hoon;Shin, Sang-Yun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.284-288
    • /
    • 2012
  • The effects of Si content on the variation of microstructure and processing window of austempered ductile cast iron were investigated. Four different Si contents between 2.42 and 3.37 wt.% were used. The influence of silicon on the microstructure and processing window of these materials were studied. Austenitizing was performed at $900^{\circ}C$ for 60min and austempering temperature were both $340^{\circ}C$ and $360^{\circ}C$ and austempering time were for 4min upto 119min and for 5min upto 160min respectively. After heat treatment, the evolution of stage I and stage II were performed by optical metallography, XRD, hardness test. The results showed that $t_2$ was delayed as Si contents was increased due to the fact that Si retarded the formation of cementite ($Fe_3C$). The high silicon content promoted the stability of the metastable two-phase combination of austenite and ausferrite.

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.

Metallic Structure of Iron Relics of Chosun Dynasty Excavated from Gangsun Tower, Chengpyeong Temple (청평사 강선루 출토 조선시대 철제유물의 금속조직에 대하여)

  • Kim, S. K.;Lee, C. H.
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.57-64
    • /
    • 2005
  • In the course of examining the micro structure of Iron chisel and Iron arrowhead, a relics of the 16th or 17th of Chosun Dynasty unearthed at near Gangsun-tower, Chengpyeong temple. Collected un-eroded samples from the relics were looked into the metallic structure through optical metallography. Non-metallic inclusions were-analysed by SEM and EDS. The micro structure examination and SEM-SDS analysis revealed that Iron chisel and Iron arrowhead had been produced from the sponge iron close to pure iron made by low temperature reducing in a solid and then the surface carbon content was increased by carburizing treatment. It was also found that Iron chisel had been hardened through the repetitive processes of quench hardening and heat treatment, after increasing carbon content to a certain level. Up to now, there have been a number of studies in the domestic academia which were studied mainly on the structure of metallic relics in the period of the Three Kingdoms or before. Although this research was limited in type and number of the relics, it turned out to be interesting in that it revealed the 16th or 17th century way of processing iron, even in fragments. It is thought to be fruitful that iron had been made even in the Chosun Dynasty from the sponge iron.

  • PDF

The Effects of Austempering Heat Treatment on the Processing Window and Mechanical Properties in Cast and Hot-rolled Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn Steel (주조 및 열간 압연된 Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn 강의 프로세싱 윈도우와 기계적 성질에 미치는 오스템퍼링 조건의 영향 비교)

  • Son, Je-Young;Hwang, Dong-Chan;Choi, Jae-Joo;Song, June-Hwan;Kim, Ji-Hun;Kim, Won-Bae;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.60-65
    • /
    • 2010
  • In this study, we investigate the effects of austempering heat treatment on the processing window and mechanical properties in cast and hot-rolled Fe-0.7 C-2.3 Si-0.3 Mn steel. Each specimens were austenitised at $900^{\circ}C$ for 7 min, and austempered at $260^{\circ}C,\;320^{\circ}C$, and $380^{\circ}C$ for the various periods of time from 2 min to 240 min. After heat treatment, the evaluation of stage I and stage II as performed by optical metallography, XRD, hardness test. Both cast and hot rolled specimens had similar processing window. So grain size effect is not important to the austempered high carbon high silicon cast steel. When the austempering temperature was $260^{\circ}C$, the microstructure consisted of the lower ausferrite while the upper ausferrite structure was formed at $380^{\circ}C$. As the austempering temperature increases from 260 to $380^{\circ}C$, the strength and hardness decreased, elongaton and volume fraction of austenite increased. In addition, there was no change of mechanical properties between cast and hot-rolled specimens.

Studies on Conservation and Metallographic Manufacturing Technique of Iron Mirror in the Korean Christian Museum at Soongsil University Collections (숭실대학교 한국기독교박물관 소장 철제거울의 보존과 금속조직분석을 통한 제작기법 연구)

  • Kim, Haena;Lee, Hyojin;Kim, Sooki
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Ancient mirrors are generally made of bronze, and it is very rare to find cases of iron mirrors excavated domestically. In this study, the unidentified ferrous artifact was treated for conservation, and was identified as a mirror. In this process, the sample was taken and analyzed for microstructure, and the manufacturing technology was studied. Analysis involved optical microscope, micro-hardness tester, and SEM-EDS. As the result of analysis, iron mirror structure exist not almost non-metallic inclusions, and partially network cementite was observed. This appears to have been caused by reduced carbon content due to decarburizing the cast iron in the solid state mirror which was created by cast iron. The ledeburite structure of the casting has difficult to cut or polish because has great hardness by high carbon content. Thus, the cast iron mirror was decarburized at a temperature under $850^{\circ}C$ with CO or $CO_2$ blocked, which reduced the hardness of the iron mirror and made it possible to polish the mirror surface. This deformation of structure according to carbon content results from such manufacturing technology.