• Title/Summary/Keyword: optical interferometry

Search Result 279, Processing Time 0.023 seconds

A Study under behavior of tensile and vibration in composite plate by ESPI method (ESPI 법에 의한 복합재 평판의 인장 및 진동 거동에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.106-111
    • /
    • 1999
  • This study discusses a non-contact optical technique electronic, electronic speckle pattern interferometry(ESPI) that is well suited for in-plane and out-of-plane deformation measurement Used as specimen which has the boundary condition of two clamped parallel edges composite material AS4/PEEK[30/-30/90]s was analyzed by ESPI to determined the characteristics of tensile and vibration. These are quantitativly compared with the result of FEM analysis. Finally the results of this study are briefly summarized as follows : (1) In the in-plane strain analysis by comparison of theoretical results with experimental results qualitatively we confirmed that measurement errors are within 3 % in case of accuracy (2) From comparison of experimental vibration modes with numerical vibration mode shapes by the FEM analysis quantitatively we confirmed that vibration mode measurement by the ESPI has high accuacy.

  • PDF

A Fiberoptic Temperature Sensor Using Low-Coherence Light Source (가간섭성이 낮은 광원을 이용한 광섬유 온도 센서)

  • Kim, Gwang-Su;Lee, Hong-Sik;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.691-697
    • /
    • 2000
  • A fiberoptic sensor using a low-coherence SLD as a light source has been studied. The sensor system employing an intrinsic fiber Fabry-Peort interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one, overcomes the ambiguous reading caused by the highly periodic natrue of conventional high-precision interferometric sensors and provides unambiguous identification of the desired phase among several candidates on the transfer function of an interferometric signal. A tentative application to the temperature sensor shows the potential that the fiberoptic sensor has a side-dynamic range of $0-900^{\circ}C$ as well as reasonable resolution higher than $0.1^{\circ}C$ without ambiguity. Due to the inherent property of the optical fiber itself and the intrinsic fiber Fabry-Perot interferometer, the proposed fiberoptic sensor will give obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

ROLLING ELEMENT BEARING LUBRICANT DEBRIS DAMAGE ASSESSMENT AND LIFE PREDICTION

  • Hoeprich, Michael R.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.461-462
    • /
    • 2002
  • Rolling element bearing fatigue life can be significantly reduced by debris particles in lubricants. The debris particles cause raceway surface dents that initiate early fatigue damage. Optical interferometry has been found to be the best method for characterizing bearing raceway debris dent damage. This technique is used to determine the important features, sizes and density of dents. The resulting data file is then used to determine bearing fatigue life. Tests show that bearings manufactured by different processes and material types are affected differently by debris damage and that these differences must be considered by life prediction methodologies. Bearings made by a specific enhanced process can significantly resist the deleterious effects of debris damage and outperform bearings made by other means.

  • PDF

Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (I) (프로파일링을 한 원통형 로울러의 탄성유체윤활 (I))

  • 박태조;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.262-270
    • /
    • 1988
  • A numerical solution of the elastohydrodynamic lubrication problem for an axially profiled cylindrical roller is presented. The problem is analyzed using finite difference method and Newton-Raphson method. The effect of side leakage and compressibility of lubricants are considered and axially nonuniform grid is constructed over the computation zone. Isobars, contours and section graphs show pressure variation and film shape. Contours plot is very similar to the previously reported experimental observations based upon optical interferometry. The maximum pressure and the minimum film thickness occur near the start of the profiling. The method used makes it possible to design an optimum axial profile of the roller to increase the life of rolling bearings.

Simultaneous measurement of in-plane and out-of-plane displacement using holographic interferometry (홀로그래피 간섭계를 이용한 횡변위와 종변위의 동시 측정)

  • 김달우;임부빈
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.267-276
    • /
    • 1997
  • We set up a four-wave holographic interferometer using a symmetric dual-beam illumination which is to measure in-plane and out-of-plane displacement simultaneously. In order to acquire the displacement phase map we applied the phase-shifting method and removed the noise of the phase map with least-squares fitting. In this approach the access to information relative to both the difference and sum of phases existing in the two arms of four-wave holographic interferometer was allowed. As a result, in-plane and out-of-plane displacement was measured to the accuracy of λ/40 and λ/100, respectively at λ=632.8nm

  • PDF

Study of Shearography Imaging for Quantity Evaluation Defects in Woven CFRP Composite Materials (직조 CFRP 복합재료 내부결함의 정량적 평가를 위한 Shearography 영상처리 기법 연구)

  • 최상우;이준현;이정호;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively. In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

Quantitative Determination of Out-of-plane Displacement by Shearography (Shearography의 1차도함수로부터 면외변위의 정량적 추출)

  • Kim, Koung-Suk;Yoon, Hong-Seok;Park, Chan-Ju;Choi, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.772-776
    • /
    • 2004
  • The paper describes the quantitative determination of out-of-plane displacement from result of Shearogrpahy, which can measure the first-order partial derivative of out-of-plane displacement directly. However, the differential sensitivity of Shearography is related to the amount of shearing, which is manually adjustable in optical interferometer and affects the quantitative determination. The relationship between those is inspected by comparing ESPI with Shearography. From the result, the amount of shearing plays a modulation factor of out-of-plane displacement and small amount of shearing gives good agreement with out-of-plane displacement.

  • PDF

Machining Accuracy for Large Optical Mirror using On-Machine Spherical Surface ]Referenced Shack-Hartmann System (On-Machine 구면기준 Shack-Hartmann 장치를 이용한 대형 반사경의 가공 정밀도 연구)

  • Hong Jong Hui;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.726-733
    • /
    • 2005
  • A spherical surface referenced Shack-Hartmann method is studied for inspecting machining accuracy of large concave mirror This method is so strong to the vibration environment for using as an on-machine inspection system during polishing process of large optics comparing with the interferometry. The measuring uncertainty of the system is shown as less than p-v 150 m. On-machine measured surface profile data with this method is used for feed back control of the polishing time or depth to improve the surface profile accuracy of large concave mirror. Also, the spherical surface referenced Shack-Hartmann method is useful for measuring aspheric such as parabolic or hyperbolic surface profile, comparing that the interferomehy needs a special null lens, which is to be a reference and difficult to fabricate.

A Study on the Determination of Displacement by Applied Laser Measurement (레이저응용계측에 의한 변위 정량화에 관한 연구)

  • 김경석;홍진후;강기수;최지은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • This study discusses a non-contact optical technique, phase shifting electronic speckle pattern interferometry, that is well suited for a deformation measurement. However, the phase shifting method has difficulties for determinating a deformation quantitatively beacuse of the characteristics of arctan function. In order to solve this problem, phase unwrapping methods has been studied during the last few years. In this study, using phase unwrapping based on line by line scanning phase shifted fringe patterns are studied to determinate a deformation quantitatively. Also least square fitting method is applied to reduce noise and improve image resolution.

  • PDF

Diamond Conditioner Wear Characterization for a Copper CMP Process

  • Boruckia, L.;Zhuang, Y.;Kikuma, R.;Rikita, N.;Yamashita, T.;Nagasawa, K.;Lee, H.;Sun, T.;Rosales-Yeomans, D.;Philipossian, A.;Stout, T
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Conditioner wear, copper polish rates, pad temperature and coefficient of friction (COF) are measured for two novel Mitsubishi Materials Corporation designs during an extended wear and polishing test. Both designs are coated with a $Teflon^{TM}$ film to reduce substrate wear and chemical attack. Using optical interferometry, changes in the coating that result in gradual changes in diamond exposure are measured. Theories of the COF, conditioning, and polishing are applied to explain the observed performance differences between the designs.