• Title/Summary/Keyword: optical intensity modulation

Search Result 110, Processing Time 0.021 seconds

Dynamic analysis of widely tunable laser diodes integrated with sampled-and chirped-grating distributed Bragg reflectors and an electroabsorption modulator

  • Kim, Byoung-Sung;Youngchul Chung;Kim, Sun-Ho
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.28-36
    • /
    • 1998
  • Widely tunable diodes integrated with periodically sampled and chirped DBR(distributed Bragg reflector) and an EA(electroabsorption) modulator are analyzed dynamically using the improved largesinal time-domain model. The tuning characteristics of sampled- and chirped-grating DBR laser diodes are demonstrated theoretically. The results of the simulation agree well with those of the experiment. And the intensity-modulation properties of the laser diodes integrated with an EA modulator are calculated. It is shown that the external modulation has the lower frequency chirp by 1/20 for the same extinction ratio than the direct modulation, and also the short pulse train can be generated using the optical gating of an EA modulator.

  • PDF

Broadband Instantaneous Frequency Measurement System Based on the Dual Paths of the Stimulated Brillouin Scattering Effect

  • Jiahong Zhang;Weijie Liao
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.378-386
    • /
    • 2023
  • A wideband instantaneous frequency measurement (IFM) system is been proposed, designed and analyzed. Phase modulation to intensity modulation conversion is implemented based on the stimulated Brillouin scattering (SBS) effect, and the microwave frequency can be measured by detecting the change in output power. Theoretical analysis shows that the frequency measurement range can be extended to 4fb by adjusting the two sweeping signals of the phase modulators with a difference of 2fb. The IFM system is set up using VPI transmission maker software and the performances are simulated and analyzed. The simulation results show that the measurement range is 0.5-45.96 GHz with a maximum measurement error of less than 9.9 MHz. The proposed IFM system has a wider measurement range than the existing SBS-based IFM system.

Instability of the output intensity of Nd:YAG ring laser with the frequency detuning (고리형 Nd:YAG 레이저에서 진동수 어긋남에 의한 출력세기의 불안정성)

  • 박대윤;김기식;이재철;길상근;홍정미
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.204-208
    • /
    • 1997
  • We analyze the intensity characteristics of the output beams of the ring laser, in which only one mode is generated in each direction, within the neoclassical model by using the Maxwell-Bloch equation. Considering the Nd:YAG crystal as a gain medium, we investigate the stability and the modulation of the output beam intensity as the pumping rate, the relaxation or the decay rate, and the frequency detuning vary, upon taking into account the effect of the beam in one beam in one direction onto the beam in the other direction. In particular, we examine the variation of the output beam intensity and the stability condition through a computer simulation.

  • PDF

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

Electro-optic Electric Field Sensor Utilizing Ti:LiNbO3 Symmetric Mach-Zehnder Interferometers

  • Jung, Hong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • The use of a $Ti:LiNbO_3$ symmetric Mach-Zehnder interferometric intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1mm$ and operates at a wavelength of $1.3{\mu}m$. The output characteristic of the interferometer shows the modulation depth of 100% and 75%, and $V_{\pi}$ voltage of 6.6 V, and 6.6 V at the 200 Hz and 1 KHz, respectively. The minimum detectable electric field is ~1.84 V/m, ~3.28 V/m, and ~11.6 V/m, corresponding to a dynamic range of about ~22 dB, ~17 dB, and ~6 dB at frequencies of 500 KHz, 1 MHz and 5 MHz, respectively.

A Flexible and Tunable Microwave Photonic Filter Based on Adjustable Optical Frequency Comb Source

  • Tran, Thanh Tuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • A flexible and tunable microwave photonic filter based on adjustable optical frequency comb source is demonstrated. We use a combination of a dual parallel Mach Zehnder modulator and an intensity modulator to generate fifteen comb lines with proper weights to implement a desired filter. The optical comb weights, corresponding to the tap coefficients of the filter, are flexibly changed by adjusting the operation parameters of the modulators. The achieved bandwidth and stopband attenuation of the tunable filter are 0.7 GHz and 20 dB, respectively. In addition, we overcome the undesired low frequency suppression appeared in a conventional scheme by applying a dual parallel Mach Zehnder modulator for single sideband suppressed carrier modulation.

In Line Plastic-Optical-Fiber Temperature Sensor

  • Seo, Hyejin;Shin, Jong-Dug;Park, Jaehee
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.238-242
    • /
    • 2021
  • In this paper, we present an in line plastic-optical-fiber (POF) temperature sensor based on intensity modulation. The in line POF temperature sensor is composed of a POF, including an in-fiber micro hole filled with reversible thermochromic material, the transmittance of which depends on temperature. The reversible thermochromic material was cobalt chloride/polyvinyl butyral gel. A cobalt chloride solution of concentration 30.8 mM was formulated using 10% water/90% ethanol (v/v) solution, and gelled by dissolving polyvinyl butyral in this solution. Four types of in line POF sensors, with in line micro holes of four different diameters, were fabricated to measure temperature in the range of 25 to 75 ℃. The output optical power of all of these in line POF temperature sensors was inversely proportional to the temperature; the relation between output power and temperature was approximately linear, and the sensitivity was proportional to the diameter of the in-fiber micro hole. The experimental results indicate that an in line POF sensor can be used effectively for measuring moderate temperatures.

Optical power splitters and optical intensity modulators utilizing Strain-Optic Waveguides of LiNbO3 (LiNbO3의 스트레인광학형 광도파로를 이용한 세기 광 변조기와 광 파워 분배기)

  • 정홍식
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • Fabrication process of strain-induced channel waveguides in $LiNbO_3$ was developed using strain-optic effect and compressional strain due to ~1.4 $\mu\textrm{m}$ surface Mo/Pt metal film. Characterization of the channel waveguides revealed a single transverse and depth mode in both TE and TM polarizations. Measurements showed total insertion loss of 6.2 and 7.7 ㏈/cm for TM and TE polarizations. respectively. Electro-optic intensity modulators with 11 mm long electrode length and 21 $\mu\textrm{m}$ electrode gap at $\lambda$ = 1.15 ${\mu}{\textrm}{m}$have been produced in $LiNbO_3$ substrates using strain-induced channel waveguides. Modulation depth of 100% at $\pi$-radian voltage of 16.1V has been demonstrated. Also, 1$\times$2 on/off power splitters at $\lambda$ = 0.63 $\mu\textrm{m}$ have been produced using strain-induced channel waveguides. On/off voltage of $\pm$ 25V has been demonstrated.

Optical Parametric Chirped-pulse Amplification of Femtosecond Ti:sapphire Laser Pulses by Using a BBO Crystal

  • Cha, Yong-Ho;Lee, Ki-Tae;Nam, Seong-Mo;Yoo, Byoung-Duk;Rhee, Yong-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • We have characterized the optical parametric chirped-pulse amplification of femtosecond Ti:sapphire laser pulses by using a BBO crystal. It is numerically verified that a high gain and a broad gain bandwidth can be obtained with a 532-nm pump laser. The dependence of the gain profile of OPA on phase matching angles, pump intensity, and crystal length is numerically investigated. Experimental results shows that the temporal fluctuation of a pump laser causes the modulation of an amplified spectrum in OPCPA.