• Title/Summary/Keyword: optical fiber measurements

Search Result 116, Processing Time 0.021 seconds

Nonlinear characteristics of photodetectors for optical fiber power measurements (광섬유 출력 측정용 광검출기의 비선형성 평가 연구)

  • 이덕희;류지욱;서정철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.321-324
    • /
    • 2004
  • We have composed an experimental system using the superposition method to measure the nonlinearity of photodetectors for optical fiber power measurements. Also we have measured the nonlinearity of a high power detector and of a low power detector. The two detectors have shown good linearity within 0.01% and 0.02%, respectively, in the 50 ㏈ dynamic range. These detectors are used as reference detectors in optical fiber characteristics measurements.

Applications of BOTDR fiber optics to the monitoring of underground structures

  • Moffat, Ricardo A.;Beltran, Juan F.;Herrera, Ricardo
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.397-414
    • /
    • 2015
  • Three different applications for monitoring displacements in underground structures using a BOTDR-based distributed optical fiber strain sensing system are presented. These applications are related to the strain measurements of (1) instrumented PVC tube designed to be attached to tunnel side wall and ceiling as a sensor; (2) rock bolts for tunnels; and (3) shotcrete lining under loading. The effectiveness of using the proposed strain sensing system is evaluated by carrying out laboratory tests, in-situ measurements, and numerical simulations. The results obtained from this validation process provide confidence that the optical fiber is able to quantify strain fields under a variety of loading conditions and consequently use this information to estimate the behavior of rock mass during mining activity. As the measuring station can be located as far as 1 km of distance, these alternatives presented may increase the safety of the mine during mining process and for the personnel doing the measurements on the field.

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

Displacement Measurement by Multiplexed Optical Loss -based Fiber Optic Sensor (다중화된 광 손실형 광섬유 센서에 의한 변위의 측정)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.556-565
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural displacement measurement. The displacement sensitivity was determined by the measurements of fiber-bending loss according to the gage length changes of the displacement sensor. The fiber optic displacement probe was manufactured to verify the feasibility of the structural displacement measurement.

  • PDF

Simple fiber tip assembly with flexible Quality factor (유연한 Quality factor가 가능한 단순한 광섬유 팁 공진 구조물)

  • 나경필;권오대
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.260-261
    • /
    • 2002
  • For Near-field Scanning Optical Microscopy measurements, the fiber tip is glued on the side of one of the tuning fork prongs vertically to its extended direction. Higher Q-factor is attainable in this geometry than in the arrangement with the fiber tip parallel to the prong. A simple mechanical design is applied to hold the fiber tip above the gluing point. The overall tuning fork-fiber tip assembly gives another advantage of the flexible Q-factor enhancement. With this treatment, Q-factor higher than 3000 is easily achievable. As an operating instance, a grating is scanned for its one dimensional topographical image.

  • PDF

Development of optical temperature distribution measurement system for Underground Power Transmission tunnel (지중선로의 분포 온도 측정 시스템 개발)

  • Lee, Keun-Yang;Song, Woo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

Measurements of Diameter Variation in Optical Fiber-Core. (광섬유 코어 Diameter-Variation 측정에 관한 연구)

  • 유봉선;이호준;원동호;박병철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.335-346
    • /
    • 1987
  • The principal reason for the backscattering in an optical fiber is the Rayleigh scattering which is caused by non-uniform density of structure material of an optical fiber and diameter variations of the optical fiber-core along an optical fiber axis. The backscattering signal which is detected by the optical time domain reflectometer system(O.T.D.R) conatains information about both tha actual decay of power and the diameter variation along the optical fiber. In this paper, the O.T.D.R. system with 2x2 fiber directional coupler, timing control unit and gated integrator is used to measure diameter variations of an optical fiber.

  • PDF

Design and Characterization of Fiber Optical Coupler for Acoustic and Vibration Measurements (음향/진동 측정을 위한 광섬유 결합기의 설계 및 특성실험)

  • Kwon, Hyu-Sang;Kim, Kyong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.971-981
    • /
    • 2006
  • This paper presents the design and characterization of a novel fiber optical coupler for intensity modulated fiber optical microphone. Theoretical equations for the optical power coupling are presented in detail including optical path analysis and misalignment. Various optical couplers are simulated and manufactured. A multi-mode to multi-mode coupler is characterized by static and dynamic movements of mirror on a well designed experimental stage.

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.