• Title/Summary/Keyword: optical energy gap

Search Result 456, Processing Time 0.024 seconds

Hall-effect properties of single crystal semiconductor P-GaSe dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결정의 홀 효과 특성)

  • Lee, Woo-Sun;Oh, Guem-Kon;Chung, Young-Ho;Jung, Chang-Soo;Son, Kyeong-Choon;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.726-728
    • /
    • 1998
  • Optical and electrical properties of GaSe:$Er^{3+}$ single crystals grown by the Bridgeman technique was been investigated by using optical absorption and Hall-effect measurements. The Hall coefficients were measured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration shows the characteristic of a partially compensated p-type semiconductor. carrier density($N_H$) of GaSe doped with Erbium was measured about $3.25{\times}10^{16}\;[cm^{-3}}$ at temperature 300K, which was high than undoped specimen. Photon energy gap ($E_{gd}$) was measured about 1.7geV.

  • PDF

Optical and electrical properties of ${\beta}-FeSi_2$ single crystals (${\beta}-FeSi_2$ 단결정의 전기적 광학적인 특성)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Lee, Woo-Sun;Son, Kyung-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1500-1502
    • /
    • 2001
  • Plate-type ${\beta}-FeSi_2$ single crystals were grown using $FeSi_2$, Fe, and Si as starting materials by the chemical transport reaction method. The ${\beta}-FeSi_2$ single crystal was an orthorhombic structure. The direct optical energy gap was found to be 0.87eV at 300K. Hall effect shows a n-type conductivity in the ${\beta}-FeSi_2$ single crystal. The electrical resistivity values was 1.608$\Omega$cm and electron mobility was $3{\times}10^{-1}cm^2/V{\cdot}sec$ at room temperature.

  • PDF

Effects of Oxygen on the Properties of Mg-doped Zinc Tin Oxide Films Prepared by rf Magnetron Sputtering (rf 마그네트론 스퍼터링으로 증착한 Mg-doped Zinc Tin Oxide막의 특성에 미치는 산소의 영향)

  • Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.373-379
    • /
    • 2013
  • Mg-doped zinc tin oxide (ZTO:Mg) thin films were prepared on glasses by rf magnetron sputtering. $O_2$ was introduced into the chamber during the sputtering. The optical properties of the films as a function of oxygen flow rate were studied. The crystal structure, elementary properties, and depth profiles of the films were investigated by X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), respectively. Bottom-gate transparent thin film transistors were fabricated on $N^+$ Si wafers, and the variation of mobility, threshold voltage etc. with the oxygen flow rate were observed.

Hall-effect Properties of Single Crystal Semiconductor p-GaSe Dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결성의 홀 효과 특성)

  • 이우선;김남오;손경춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Optical and electrical properties of GaSe:Er\ulcorner single crystals grown by the Bridgenman technique have been investigated by using optical absorption and h\Hall-effect measurement system. The Hall coefficients were mea-sured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration show the characteristic of a partially compensated p-type semiconductor. Carrier density(N\ulcorner) of GaSe doped with Erbium was measured about 3.25$\times$10\ulcorner [cm\ulcorner] at temperature 300K, which was higher than undoped specimen. Photon energy gap (E\ulcorner) of GaSe:Er\ulcorner specimen was measured about 1.79eV.

  • PDF

Study on the optical properties of ZnS and its natural oxide by spectroscopic ellipsometry

  • Kim, T. J.;Kim, Y. D.;Park, Y. D.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.2
    • /
    • pp.52-55
    • /
    • 2001
  • We report best dielectric function of ZnS by spectroscopic ellipsometry in the 3.7 - 6.0 eV photon energy range at room temperature. Using proper wet chemical etching procedure, natural overlayer was removed to obtain the pure dielectric function of ZnS, which had a higher <$\xi$$_2$> value at the El band gap peak than that previously reported. We also determined the dielectric property of the natural overlayer on ZnS by following the evolution of <$\xi$$_2$> with chemical etching. We found that the optical property of the overlayer was well described by amorphous semiconductor model.

  • PDF

Optical and Electrical Properties of $\beta$-$FeSi_2$ Single Crystals ($\beta$-$FeSi_2$ 단결정의 전기적 광학적인 특성)

  • 김남오;김형곤;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.618-621
    • /
    • 2001
  • Plate-type $\beta$-FeSi$_2$single crystals were grown using FeSi$_2$, Fe, and Si as starting materials by the chemical transport reaction method. The $\beta$-FeSi$_2$single crystal was an orthorhombic structure. The direct optical energy gap was found to be 0.87eV at 300K. Hall effect shows a n-type conductivity in the $\beta$-FeSi$_2$ single crystal. The electrical resistivity values was 1.608Ωcm and electron mobility was 3x10$^{-1}$ $\textrm{cm}^2$/V.sec at room temperature.

  • PDF

The Stability of Hydrogenated Amorphous Silicon by Hydrogen Radical Annealing (수소기처리에 의한 수소화된 비정질규소의 안정성에 관한 연구)

  • 이재희;이원식
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.73-76
    • /
    • 1996
  • We have prepared hydrogenated amophous silicon (a-si : H) films with superlattice structure by hydrogen radical anneling(HRA) technique. We have studied the preparation of a-Si :H films by HRA and the optical & electronic characteristics. Optical band gap and the hydrogen contents in the a Si : H film is decreased as HRA time increased. We first report a -Si : H film prepared by periodicdeposition of a-Si : H layer and HRA have the superlattice structure using TEM . After 1 hour light soaking on the a-Si :H film prepared by HRA, there are no difference in the temperatre dependence of dark conductivity and the conductivity activation energy. An excellent stability for light in a-Si :H films by HRA can be explained using the long-range structural relaxation of the amorphous network and the propertiesof light -induced defects(LID) proposed by Fritzsche.

  • PDF

Characterization of glasses composed of PbO, ZnO, MgO, and B2O3 in terms of their structural, optical, and gamma ray shielding properties

  • Aljawhara H. Almuqrin;M.I. Sayyed;Ashok Kumar;U. Rilwan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2842-2849
    • /
    • 2024
  • The amorphous glasses containing PbO, ZnO, MgO, and B2O3 have been fabricated using the melt quenching technique. The structural properties have been analysed using the Fourier-transform infrared (FTIR) and Raman spectroscopy. Derivative of Absorption Spectra Fitting (DASF) method have been used to estimate the band gap energy from the UV-Vis absorption data which decreases from 3.02 eV to 2.66 eV with increasing the concentration of the PbO.The four glass samples 0.284 and 0.826 MeV showed unique variations in terms of gamma attenuation ability. LZMB4 glass sample proved to be the mist effective in terms of shielding of gamma radiation as it requires little distance compared to LZMB3, LZMB2 and LZMB1 to attenuate. RPE revealed a raise with increase in the thickness of the material and reduces as the energy raises. TF is superior in LZMB1 compared to LZMB2, LZMB3 and LZMB4, confirming that, LZMB4 will attenuate better. The ZEff of the materials was seen falling as the energy increases, confirming that the linear attenuation coefficient of the glass materials decreases when the energy is increased. The results confirmed that, glass material LZMB4 is the best option especially for gamma radiation shielding applications compared to LZMB3, followed by LZMB2, then LZMB1.

The Calculation of the Energy Band Gaps and Optical Constants of Zincblende InyGa1-yAs1-xNx on Composition (조성비 변화에 따른 질화물계 화합물 반도체 InyGa1-yAs1-xNx의 에너지 밴드갭과 광학상수 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.877-886
    • /
    • 2019
  • The energy band gaps and optical constants of zincblende $In_yGa_{1-y}As_{1-x}N_x$ on the variation of temperature and composition are determined by using band anticrossing method. The energy band gaps are decreasing continuously in $In_yGa_{1-y}As_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, $0{\leq}y{\leq}1.0$, 300K) and the bowing parameter is calculated as 0.522eV. The calculation results of energy band gaps are consistent with those of other studies. A refractive index n and a high-frequency dielectric constant ${\varepsilon}$ are calculated by a proposed modeling equation using the results of energy band gaps.

Electrical and optical properties of ZnO:Al transparent conductive films with thermal treatments (ZnO:Al 투명도전막의 열처리에 따른 전기적 및 광학적 특성)

  • Ma, Tae Young;Park, Ki Cheol
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.435-440
    • /
    • 2020
  • ZnO:Al films with about 500 nm thick were prepared by RF magnetron sputtering. The ZnO:Al films were annealed at 100 ℃, 200 ℃, 300 ℃, and 400 ℃ for 10 h, respectively. The resistivity, carrier concentration, and mobility variation of ZnO:Al films with heat treatments were measured. The causes of the resistivity variation of ZnO:Al films with heat treatments were investigated by utilizing the results of x-ray diffraction and field emission scanning electron microscope. The energy band gap, Urbach energy, and refractive index were obtained from the transmittance of ZnO:Al films. The change in electrical properties of the ZnO:Al film was explained in relation to the optical properties.