• Title/Summary/Keyword: optical energy gap

Search Result 456, Processing Time 0.03 seconds

Structural, Optical, and Chemical Properties of Cadmium Phosphate Glasses

  • Chung, Jae-Yeop;Kim, Jong-Hwan;Choi, Su-Yeon;Park, Hyun-Joon;Hwang, Moon-Kyung;Jeong, Yoon-Ki;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.128-132
    • /
    • 2015
  • In this study, we prepared cadmium phosphate glasses with various compositions, given by $xCdO-(100-x)P_2O_5$ (x = 10-55 mol%), and analyzed their Fourier transform infrared spectra, dissolution rate, thermal expansion coefficient, glass transition temperature, glass softening temperature, and optical band gap. We found that the thermal expansion coefficient and dissolution rate increased while the glass transition temperature and glass softening temperature decreased with increasing CdO content. These results suggest that CdO acts as a network modifier in binary phosphate glass and weakens its structure.

Study on Optical Properties and Phase Transition of $TlGa_xIn_{1-x}Se_2$ Solid Solutions ($TlGa_xIn_{1-x}Se_2$ Solid Solution의 광학적 특성 및 상전이에 관한 연구)

  • Yoon, Chang-Sun;Kim, Byong-Ho;Cha, Duk-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.220-226
    • /
    • 1993
  • An investigation was made of the dependences of the lattice constants and the energy gap on the composition of $TlGa_xIn_{1-x}Se_2$ single cystals grown by Bridgman method. It was found that a discontinuity in $TlGa_xIn_{1-x}Se_2$ solid solutions occurred in the composition range 0.25$0.0{\leq}X{\leq}0.25$) to the monoclinic structure ($0.65{\leq}X{\leq}1.0$) was observed in this composition range. The temperature dependences of the energy gap and the dielectric constant in $TlGaSe_2$ single crystal have shown that the anomalies appeared at 107 K and 120 K corresponding to first-order and second-order phase transitions, respectively.

  • PDF

Optical Properties of Undoped and $Ni^{2+}$ -doped $MgIn_2Se_4$ Single Crystals ($MgIn_2Se_4 및 MgIn_2Se_4 : Ni^{2+}$ 단결정 성장의 광학적 특성에 관한 연구)

  • Kim, Hyeong-Gon;Kim, Byeong-Cheol;Sin, Seok-Du;Kim, Deok-Tae;Choe, Yeong-Il;Kim, Nam-O
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.12-17
    • /
    • 1999
  • $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystals were grown in the rhombohedral structure by the chemical transport reaction (C.T.R.) method using iodine as a transport agent. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct band gap. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region by decreasing temperature and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The impurity optical absorption peaks due to nickel are observed in $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Ni_{2+}$ ions located at $T_d$ symmetry site of $MgIn_2Se_4$ host lattice. In the hotoluminescence spectrum of the single crystal at 10 K, a blue emission with a peak at 687nm and a green emission with a peak at 815nm for the $MgIn_2Se_4$ single crystal were observed.

  • PDF

Electronic and Optical Properties of amorphous and crystalline Tantalum Oxide Thin Films on Si (100)

  • Kim, K.R.;Tahir, D.;Seul, Son-Lee;Choi, E.H.;Oh, S.K.;Kang, H.J.;Yang, D.S.;Heo, S.;Park, J.C.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.382-382
    • /
    • 2010
  • $TaO_2$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility in achieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFETchannel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. The atomic structure of amorphous and crystalline Tantalum oxide ($TaO_2$) gate dielectrics thin film on Si (100) were grown by utilizing atomic layer deposition method was examined using Ta-K edge x-ray absorption spectroscopy. By using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS) the electronic and optical properties was obtained. In this study, the band gap (3.400.1 eV) and the optical properties of $TaO_2$ thin films were obtained from the experimental inelastic scattering cross section of reflection electron energy loss spectroscopy (REELS) spectra. EXAFS spectra show that the ordered bonding of Ta-Ta for c-$TaO_2$ which is not for c-$TaO_2$ thin film. The optical properties' e.g., index refractive (n), extinction coefficient (k) and dielectric function ($\varepsilon$) were obtained from REELS spectra by using QUEELS-$\varepsilon$(k, $\omega$)-REELS software shows good agreement with other results. The energy-dependent behaviors of reflection, absorption or transparency in $TaO_2$ thin films also have been determined from the optical properties.

  • PDF

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과)

  • Jung, Il-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.584-588
    • /
    • 2011
  • The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

Implementation of fiber-optic temperature sensor system base on optical absorption device (광흡수 소자를 이용한 광온도 센서 시스템의 구현)

  • 김영수;김요희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.128-134
    • /
    • 1995
  • A fiber-optic temperature sensor utilizing an optical absorption device (InP) was fabricated. The spectrum of transmitted light through an InP device was obtained at the three temperatures(249 K, 369 K). A stabilized LED(light emmiting diode) driver, photoreceiver, and signal proocessing electronics were designed. An intensity referencing technique was adopted in order to minimize the fluctuation of output signal due to external pertubation of the transmitting optical fiber. The optical absorption edge of the InP device moves to longer wavelength at a rate of 0.42 nm / K, and energy gap of InP is 1.35 eV at room temperature. From these results, it is concluded that the InP device has temperature dynamic range of 300 K with LED of center wavelength of 940nm and spectral width of 50nm. The designed fiber-optic temperature sensor system showed good linearity within the temperature range from -30$^{\circ}C$ to + 150$^{\circ}C$.

  • PDF

Electrical and Optical Properties of Zinc Oxide Thin Films Deposited Using Atomic Layer Deposition

  • Kim, Jeong-Eun;Bae, Seung-Muk;Yang, Hee-Sun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.353-356
    • /
    • 2010
  • Zinc oxide (ZnO) thin films were deposited using atomic layer deposition. The electrical and optical properties were characterized using Hall measurements, spectroscopic ellipsometry and UV-visible spectrophotometry. The electronic concentration and the mobility were found to be critically dependent on the deposition temperature, exhibiting increased resistivity and reduced electronic mobility at low temperature. The corresponding optical properties were measured as a function of photon energy ranging from 1.5 to 5.0 eV. The simulated extinction coefficients allowed the determination of optical band gaps, i.e., ranging from 3.36 to 3.41 eV. The electronic carrier concentration appears to be related to the reduction in the corresponding band gap in ZnO thin films.

Structural and Optical Properties of CdS Thin Films Deposited by R.F. Magnetron Sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.149-149
    • /
    • 2011
  • CdS films were deposited on glass substrates by R.F. magnetron sputtering method and the films were annealed at various substrate temperatures ranging from room temperature to $300^{\circ}C$. Structural properties of the films were studied by X-ray diffraction analysis. The structural parameters as crystallite size have been evaluated. The crystallite sizes were found to increase, and the X-ray diffraction patterns were seen to sharpen by increasing substrate temperatures. X-ray diffraction patterns of these films indicated that they contain both cubic (zincblende) and hexagonal (wurtzite) structures as a mixture. Optical properties of the films were measured at room temperature by using UV/VIS spectrometer in the wavelength range of 190 to 1100nm and optical absorption coefficients were calculated using these data. The energy gap of the films was found to decrease, and the band edge sharpness of the optical absorption was seen to oscillate by annealing. The results show that heat treatments under optimal annealing condition can provide significant improvements in the properties of CdS thin films.

  • PDF

The electrical and optical properties of semiconductor CdTe films (반도체 CdTe 박막의 전기 광학적 특성)

  • 박국상;김선옥;이기암
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.78-86
    • /
    • 1995
  • Abstract We have investigated the structure and the conductivity of the CdTe films evaporated on the glass substrates by Electron Beam Evaporator (EBE) technique. The structure is observed to be polycrystalline whose phase is mainly hexagonal phase with some cubic phase. Dark electric conductivity is of the order of $1-^{-8} {\Omega}^{-1} cm^{-1}$ and slightly increased by annealing for an hour at $300^{\circ}C$. Activation energy calculated from the electrical conductivity which varies with increasing temperature is 1.446 eV in the case of room temperature substrates. The values of optical band gap are 1.52 eV in direct transition whereas 1.44 eV in indirect. The photoconductivity of the films is of the order of $1-^{-8} {\Omega}^{-1} cm^{-1}$ and the peak energy is about 600 nm in the room temperature. The photoconductivity starts to increase at 850 nm, which is close to 1.446 eV, the activation energy of CdTe polycrystal films.

  • PDF

C 1s photoelectron energy loss spectra of organic electroluminescent materials

  • Lee, J.W.;Kim, T.H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • The C 1s photoelectron energy loss spectra of tris (8-hydroxy-quinoline) aluminum (Alq$_3$) and N,N'-diphenyl-N,N'-bis (3-methyl phenyl)-1,1'-bi-phenyl-4,4'-diamine (TPD) thin films have been investigated. Two major loss structures, namely the plasmon dominated loss lines and shake-up satellites, have been observed. The shake-up spectrum of the C 1s photoelectron line is directly related to the $\pi$-$\pi$$\^$*/ energy gap of the molecule which plays an important role in organic electroluminescent materials. The molecular orbitals of Alq$_3$ and TPD and their major components, quinolime and benzene, have been calculated with the AMI semi-empirical method. The amount of the plasma-dominated loss of Alq$_3$ and TPD, which has to do with the delocalization of electrons through the molecule, was about 24 eV, alike in both cases. The main peak of the C 1s shake-up spectrum of Alq$_3$ and TPD, however, was 5.2 eV and 6.8 eV respectively. It was found that the main shake-up peak reflects more the local $\pi$\longrightarrow$\pi$$\^$*/ transition of quinoline and benzene component rather than the excitation of the whole molecule of Alq$_3$ and TPD. The C 1s shake-up spectra, however, revealed some correlation with the optical energy gap of the organic eletroluminescent materials.

  • PDF