• Title/Summary/Keyword: optical efficiency

Search Result 1,944, Processing Time 0.028 seconds

Research on the Influence of Polarization Aberration on Heterodyne Efficiency in Space Coherent Laser Communication System

  • Zheng, Yang;Piao, Yu
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Heterodyne efficiency is an indicator to evaluate the performance of space coherent laser communication systems. It is affected by signal light and local oscillator (LO) light amplitude, phase and polarization state. In this paper, based on the common heterodyne efficiency, a heterodyne efficiency model that can reflect polarization aberration of optical system is proposed. The heterodyne efficiency is analyzed when the signal light and the LO light are linearly polarized or circularly polarized. For a coherent communication optical system, when the incident signal light is right-circularly polarized light and the incident LO light is 45° linear polarized light. Based on the three-dimensional ray tracing theory and the heterodyne efficiency proposed in this paper, the change of polarization states and the distribution of heterodyne efficiency of the signal light and LO light influenced by the optical system's polarization aberration are analyzed. Analysis shows that the heterodyne efficiency model proposed in this paper can be used to evaluate coherent communication systems and reflect the influence of optical system polarization aberration.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

Analysis add Comparison of the Performance of Optical Collimator by Lenses (렌즈에 따른 광콜리메이터 성능 비교 분석)

  • 선화영;최두선;제태진;최기봉;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.132-136
    • /
    • 2002
  • Optical collimating lenses are play a role as maintenance parallel light and as a kind of optical collimating lens, there is Ball lenses, GRIN-rod lenses, spherical lenses and aspherical lenses etc. but recently GRIN lens has monopolized a market. The performance of optical collimator depended on the coupling efficiency. In this paper, we were compared and analyzed to be measured values of coupling efficiency with respect to optical working distance using GRIN rod lenses and spherical lenses. In the case of GRIN lenses with a beam size of 420 ${\mu}{\textrm}{m}$, the minimum coupling efficiency was obtained to a measured value of 0.15 ㏈ and in the case of spherical lenses was obtained to a measured value of 0.12 ㏈ on the same condition. In results, we found that a performance of spherical lenses be better as compared with a that of GRIN lens.

  • PDF

Effective Periodic Poling in Optical Fibers

  • Kim, Jong-Bae;Ju, Jung-Jin;Kim, Min-Su;Seo, Hong-Seok
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.277-280
    • /
    • 2004
  • The distributions of electric field and induced second-order nonlinearity are analyzed in the periodic poling of optical fibers. A quasi-phase matching efficiency for the induced nonlinearity is calculated in terms of both the electrode separation distance between the applied voltage and generalized electrode width for the periodic poling. Our analysis of the quasi-phase matching efficiency implies that the conversion efficiency can be enhanced through adjusting the separation distance, and the electrode width can be maximized if the electrode width is optimized.

  • PDF

Modeling of Mixed Phosphors in White Light Emitting Diode (백색 발광다이오드에서의 혼합 형광체 모델링)

  • Kim, Dowoo;Gong, Dayeong;Gong, Myeongkook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.567-574
    • /
    • 2013
  • An optical model is proposed in the white LED using phosphor and LED chip. In this paper a new model that describes the absorption rate and quantum efficiency with increasing the mixing ratio of phosphor in silicone, and the allotment of the phosphor absorption optical power in the several phosphor mixing in the silicone. Single phosphor in silicone from the optical measurement data before and after molding, the solution to get the blue optical power and the phosphor emission optical power is proposed. By these solution the absorption rate and the quantum efficiency was obtained. The model with single phosphor mixing in the silicone the validity was confirmed.

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network (광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석)

  • 김명진;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2003
  • In this paper, we modeled the incident beam in order to analyze and evaluate the optical thin film device for wavelength division multiplexing in optical telecommunication network. As applied ray tracing method to the optical path, we were compared the accuracy of coupling efficiency simulated by two modeling methods. In the results of sinulation, ceil modeling method was preferred to annual modeling method in micro-optic device because of accuracy for coupling efficiency and Gaussian intensity distribution. In the results of optimal simulation for optical device using thin film filter, the distance (d1) between optical fiber and GRIN lens, the distance (d2) between GRIN lens and thin film filter and the coupling efficiency were 0.24 mm, 0.25 mm and -0.11 ㏈ respectively. As d2 was displaced at 0.25 mm and d1 was varied in order to evaluate the optimal value, d1 and maximum coupling efficiency were 0.24 mm and -0.35㏈, respectively. Then the results of experiment were corresponded to that of optimal simulation by cell modeling and it was possible to analyze the performance for optical device using thin film filter by the simulation.

Effects of Form Errors of a Micromirror Surface on the Optical System of the TMATM(Thin-film Micromirror ArrayTM) Projector

  • Jo, Yong-Shik;Kim, Byoung-Chang;Kim, Seung-Woo;Hwang, Kyu-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 2000
  • The projectors using liquid crystal display(LCD) have faults such as low optical efficiency, low brightness and even heat generation. To solve these problems reflective-type spatial light modulators based on MEMS (Microelectromechanical Systems) technology have emerged. Digital Micromirror DeviceTM(DMDTM), which was already developed by Texas Instruments Inc., and Thin-film Micromirror ArrayTM(TMATM), which has been recently developed by Daewoo Electronics Co., are the representative examples. The display using TMATM has particularly much higher optical efficiency than other projectors. But the micromirrors manufactured by semiconductor processes have inevitable distortion because of the limitations of the manufacturing processes, so that the distortions of their surfaces have great influence on the optical efficiency of the projector. This study investigated the effects of mirror flatness on the optical performance, including the optical efficiency, of the TMATM projector. That is to say, as a part of the efforts to enhance the performance of the TMATM projector, how much influence the form errors of a micromirror surface exert on the optical efficiency and the modulation of gray scale of the projector were analyzed through a pertinent modeling and simulations.

  • PDF

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

Optical Packaging and Interconnection Technology (광 패키징 및 인터커넥션 기술)

  • Kim, Dong Min;Ryu, Jin Hwa;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2012
  • By the need for high-speed data transmission in PCB, the studies on the optical PCB has been conducted with optical interconnection and its packaging technology. Particularly, the polymer-based optical interconnection has been extensively studied with the advantages such as cost-effective and ease of process. For high-efficiency and passive alignment, the studies were performed using the 45 degree mirrors, MT connector, and etc. In this work, integrated PLC device and fiber alignment array block was fabricated by using imprint technology to solve the alignment and array problem of optical device and the optical fiber. The fabricated integrated block for optical interconnection of PLC device has achieved higher precision of decreasing the dimensional error of the patterns by optimization of process and its insertion loss has an average value of 4.03dB, lower than criteria specified by international standard. In addition, a optical waveguide with built-in lens has been proposed for high-efficiency and passive alignment. By simulation, it was confirmed that the proposed structure has higher coupling efficiency than conventional no-lens structure and has the broad tolerance for the spatial offset of optical waveguide.