• Title/Summary/Keyword: optical diameter

Search Result 774, Processing Time 0.023 seconds

A Development of Small-diameter Composite Helical Spring Structure for Reinforcement of Fiber Splice (광섬유 융착 부위 중접용 미소 직경 복합재료 스프링 구조물 개발)

  • 윤영기;정승환;이우일;이병호;윤희석
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2003
  • Optical fibers, for splice, are stripped of their plastic coatings with a plastic stripper and cut off at the end. Therefore, stripped fibers often receive accidental damages and sustain small flaws or cracks. As a result, the breaking strength of a fiber splice made under normal conditions is reduced to about 0.4∼1 ㎏ on the average, nearly one-tenth of the fiber's strength. This makes it necessary to reinforce the splice. One of the most practical and reliable methods for optical fiber splicing is fusion splicing, comprising the steps of tripping the plastic coatings from the two fiber ends to be splice, placing the two bare fiber ends in an end-to-end position, and of fusion splicing, such as are fusion. Generally, steel bar (SB) sleeve is used to reinforce this fusion-splicing region. However, this type of sleeve has a critical defect to keep optical lose after bent by a sudden load. New type of composite spring (CS) sleeve is developed to make up for the weak points in the SB sleeve. This sleeve has an effect on restoration to the original state after eliminating the bending load. The optical spectrum analyzes results show the availability of reinforcement for the fusion splicing optical fiber using small diameter composite springs under the various loading conditions.

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

The Optimization of Optical Current Transformer owing to Incident Polarization (입사편광에 따른 광섬유형 광 CT의 최적화)

  • Kim Duck-Lae;Kim Byung-Tai
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.407-413
    • /
    • 2005
  • The optical current transformer was developed for 170 kV GIS using optical fiber. The sensor optimized on the optical CT was wound 3 turns and twisted 4 times per a turn at the pipe with a diameter of 130 m. To optimize the optical CT, the output signal was measured according to the setting angle of polarizer and analyzer, The asymmetry and distortion of the output signals were improved when the parallel polarized light was incident to the fiber sensor and under the angle of analyzer was $45^{o}$. The measurement error for the linearity was only $\pm{0.42}\;\%$ to 1,000 A in the case of reflection type.

Bootstrap Simulation for Performance Evaluation of Optical Multifiber Connectors (붓스크랩 기법을 이용한 다심 광커넥터 손실특성 예측)

  • 전오곤;강기훈
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.250-264
    • /
    • 1998
  • The purpose of the thesis is to develop simulation program for forecasting of optical connector. So we can achieve the time and the money saving for making the optical connector. Optical performance (insertion loss) of optical connector mainly relies on 3 misalignment factors-ferrule factor due to mis-manufacture from design, auto-centering effect that is fiber behavior phenomena between hole and fiber, fiber misalignment factor. Simulation use experimental data with auto-centering effect and fiber factor and use pseudo data with ferrule through random number generation because it is developing stage. In this study we a, pp.y kernel density estimation method with experimental data in order to know whether it belong to or not specific parametric distribution family. And we simulate to forecast insertion loss of optical multifiber connector under specific design model using nonparametric bootstrap resampling data and parametric pseudo samples from uniform distribution. We obtain the tolerance specifications of misalignment factors satisfying not exceed in maximum 1.0dB and choose optimal hole diameter.

  • PDF

Development of optical temperature distribution measurement system for Underground Power Transmission tunnel (지중선로의 분포 온도 측정 시스템 개발)

  • Lee, Keun-Yang;Song, Woo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

Nondestructive evaluation of spot weld quality using by ultrasonic measurement (초음파계측에 의한 SPOT용접품질의 비파괴평가)

  • 박익근
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 1994
  • Spot welding has wide used with a high work efficiency in the automotive and aerospace industries. Up to the present, the technique mainly used to test spot welds on production lines has been entirely depended upon destructive chisel or peel testing. Therefore, it's being very important assignment to secure the NDE technique which can be evaluate spot weld quality with more efficiency and high reliability. This paper discusses the feasibility of UNDE techniques to evaluate spot weld quality. For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of a the corona bond from nugget, ultrasonic c-scan image and distribution of reflective echo amplitude was measured by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). As the results of this study, corona bond which is the most dangerous types of interface defects can be successfully detected, as well as expulsion and voids. Ultrasonic testing results were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be successfully measured with the accuracy of 0.8 mm.

  • PDF

A Study on the Variation of Optical Fiber Splicing Loss due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Kim Young-Ho;Yoo Kang-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-110
    • /
    • 2006
  • The most sensitive part of the installed optical cable is the optical loss variation of the splicing point according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and variation. Through the bending test of optical fiber, rapid increase of optical loss was measured within the diameter of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

  • PDF

Micro-Porous Ceramics Using directionally $MgAl_2O_4/MgO$ eutectic crystals

  • Lee, Jong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.229-233
    • /
    • 2005
  • Novel process was tried to obtain micro-porous ceramic body containing continuous pore channel. $MgAl_2O_4/MgO$ eutectic fibers and rods have been grown successfully by the micro-pulling-down method, and the microstructures and optical characterizations of grown crystals were performed. $MgAl_2O_4/MgO$ eutectic fibers of $0.3{\sim}1mm$ in diameter and about 500 mm in length, and the rods having 5 mm in diameter with approximately 60 mm in length have been grown with the $6{\sim}120mm/hr$ of growth speed. The eutectic fibers showed homogeneous microstructure in which MgO fiber aligned to the growth direction in the $MgAl_2O_4$ (spinel) matrix. The grown crystals looked semitransparency under naked eyes. Optical and orientational characterizations were performed. The second phase of MgO (periclase) was easily removed by selective etching with hydrochloric acid, and then porous bodies were obtained.

Development of Smart Tendon Instrumented with Optical FBG Sensors (FBG 센서를 내장한 스마트 강연선 개발)

  • Kim, Jae-Min;Kim, Young-Sang;Kim, Hyoun-Wo;Seo, Dong-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.33-38
    • /
    • 2007
  • This paper reports an attempt to develop 7-wire steel tendon which is instrumented with optical FBG sensors. The tendon is devised to replace the king cable, which is located in the center of the tendon, by a steel tube in which the FBG sensor are attached along the hole using a high-mobility polyester resin. The circular steel tube has typical of 5 mm outer diameter and 1 mm inner diameter, and can easily be manufactured by means of an pultrusion process. Using the tube, in this study, three different types of one meter-long smart tendons are fabricated depending on mixture ratio of polyester resin and initiator. The performance of the FBG sensors as well as mechanical characteristics of the prototype are tested through the tensile test. Test results shows that the proposed smart tendon is in principle very effective for measuring the working strain of the tendon.

  • PDF

Fabrication and Characterization of Thermal Expanded Core Fiber using the Flame Brushing Method (프레임 브러싱 방법을 이용한 열확산 코어 광섬유 제작 및 특성)

  • Kim, Jun-Hyong;Yang, Hoe-Young;Lee, Sang-Pil;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1077-1081
    • /
    • 2007
  • Thermal expanded core (TEC) fiber can reduce, being advantaged from thermal diffusion technology, connection loss by expanding the tolerance in relation to axial offset and gap when making optical connection having mode field diameter (MFD) of optical fiber expanded locally. In this paper, TEC fiber fabrication system based on the frame brushing techniques using twin-torch tip was designed and developed in order to maintain a stable thermal diffusion and single-mode when manufacturing TEC fiber. We were able to obtain that varied kinds of TEC fibers of which MFD could have been extended between $20\;{\mu}m$ and $40\;{\mu}m$ by TEC fiber fabrication system. In addition, the characteristic of connection loss was measured by alignment two TEC fibers of which MFD was $30\;{\mu}m$.