• Title/Summary/Keyword: optical computing

Search Result 154, Processing Time 0.031 seconds

Optical Neuro-Computing

  • Paek, Eung-Gi
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.172-178
    • /
    • 1991
  • In this paper, we riview a new type of optical computing-optical neuro-computing-which was inspired to emulate the computational capability of the human brain. Also, recent activities at Bellcore for the implementation of optical neuro-computers are described.

  • PDF

Optical Pipelined Multi-bus Interconnection Network Intrinsic Topologies

  • d'Auriol, Brian Joseph
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.632-642
    • /
    • 2017
  • Digital all-optical parallel computing is an important research direction and spans conventional devices and convergent nano-optics deployments. Optical bus-based interconnects provide interesting aspects such as relative information communication speed-up or slow-down between optical signals. This aspect is harnessed in the newly proposed All-Optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) model. However, the physical realization of such communication interconnects needs to be considered. This paper considers spatial layouts of processing elements along with the optical bus light paths that are necessary to realize the corresponding interconnection requirements. A metric in terms of the degree of required physical constraint is developed to characterize the variety of possible solutions. Simple algorithms that determine spatial layouts are given. It is shown that certain communication interconnection structures have associated intrinsic topologies.

Fundamental Theory on the Zeros Distribution of Multizeros Optical Beam for Longrange Optical Measurement Applications (광학식 장거리 계측을 위한 다중영점 광빔의 영점 배치에 관한 기초 이론)

  • Fujimoto, Ikumatsu;Sato, Seichi;Kurihara, Toru;Ando, Sigeru;Kim, Min-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.33-40
    • /
    • 2010
  • Multizeros(multiple order zeros) optical beams which belong to the Laguerre-Gaussian beams, have rotational phase and conically-shaped amplitude structures around multizeros points in their phase and amplitude profiles, respectively. Especially, they have their own characteristics that the multizero points do not vanish over free-space propagation. Therefore, they are expected to be adequate for the applications of long-range optical measurement by using their multizero points as optical markers for the deformation sensing. In this paper, fundamental properties of multizeros optical beams for long-range optical measurement applications are investigated and clarified. In particular, the mathematical investigations are described on the characteristics of multizeoros optical beams such as (1) separation of a multizero into isolated single order zeros, (2) topological charge of zeros distribution which are induced by superposing them. And also the outline of a fundamental experiment and its result are explained briefly.

Dynamics of All-Optical Switching in Bacteriorhodopsin and its Application to Optical Computing

  • Singh, C.P.;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.317-319
    • /
    • 2002
  • All-optical switching has been demonstrated in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial 8 state absorption. The switching characteristics have been analyzed using the rate equation approach considering all the six intermediate states (B, K, L, M, N and 0) in the bR photocycle. The switching characteristics are shown to be sensitive to life time of the M state, absorption cross-section of the 8 state at probe wavelength ($\sigma$ $\_$Bp/) and peak pump intensity. It has been shown that the probe laser beam can be completely switched off (100 % modulation) by the pump laser beam at relatively low pump powers, for $\sigma$$\_$Bp/ = O. The switching characteristics have been used to design all-optical NOT, OR, AND and the universal NOR and NAND logic gates for optical computing with two pulsed pump laser beams.

  • PDF

Autonomous Optical Thinking Machine Dealing with Impression of Pictures

  • TAMANO, KazuHo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.423-425
    • /
    • 1998
  • An optical system which can autonomously form and display an impression of a picture made up by many figures has been developed. This system consists of optical fuzzy-neurons which calculate the correlation between the input picture and the reference image by incoherent optics. The calculated signal is applied to an amplifier whereby the output signal increases, then decreases according to increase of the input signal . These outputs are synthesized, and are used for changing the position where the system gaze on a part of the input picture by light beam. In this system, the light intensity used for gazing changes chaotically, The attractor drawn from the change of light intensity corresponds to the impression of the picture. This paper shows the results that are calculated by the numerical simulation. The system has been simulated to express the impression for a picture formed by 4figures.

  • PDF

Optical Look-ahead Carry Full-adder Using Dual-rail Coding

  • Gil Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 2005
  • In this paper, a new optical parallel binary arithmetic processor (OPBAP) capable of computing arbitrary n-bit look-ahead carry full-addition is proposed and implemented. The conventional Boolean algebra is considered to implement OPBAP by using two schemes of optical logic processor. One is space-variant optical logic gate processor (SVOLGP), the other is shadow-casting optical logic array processor (SCOLAP). SVOLGP can process logical AND and OR operations different in space simultaneously by using free-space interconnection logic filters, while SCOLAP can perform any possible 16 Boolean logic function by using spatial instruction-control filter. A dual-rail encoding method is adopted because the complement of an input is needed in arithmetic process. Experiment on OPBAP for an 8-bit look-ahead carry full addition is performed. The experimental results have shown that the proposed OPBAP has a capability of optical look-ahead carry full-addition with high computing speed regardless of the data length.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

All-optical Data Extraction Based on Optical Logic Gates (반도체 광 증폭기를 이용한 전광 데이터 추출)

  • Lee, Ji Sok;Jung, Mi;Lee, Hyuk Jae;Lee, Taek Jin;Jhon, Young Min;Lee, Seok;Woo, Deok Ha;Lee, Ju Han;Kim, Jae Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.143-146
    • /
    • 2012
  • All-optical data extraction, one of the key technologies for all-optical computing and optical communication to perform add-drop, packet switching, and data reset, etc., is experimentally demonstrated by using cross-gain modulation (XGM) of semiconductor optical amplifiers (SOAs). Also, all-optical data extraction based on numerical simulation is performed by using the VPI simulation tool. In this paper, the suggested optical system based on SOAs shows the potential for high speed, and highly integrable and low power optical data computing.