• Title/Summary/Keyword: optical and SAR

Search Result 106, Processing Time 0.026 seconds

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

A Comparison Study on the Techniques for DEM Extraction from SAR Imagery (SAR 영상을 이용한 수치표고모형 추출기법의 비교 연구)

  • Seo, Byoung-Jun;Kim, Yong-Il;Eo, Yang-Dam;Jeong, Jae-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.21-34
    • /
    • 1998
  • SAR is an active imaging sensor emitting its own energy source and can be operated in all weather conditions. Thus SAR provides data which can not be obtained by an optical sensor. In this study, the potentials and problems of the techniques for DEM extraction from the SAR imagery were evaluated through theoretical researches and practical experiments. And then the accuracy was tested by RMS error between the digitized map contour and the results from this experiment. Here, two types of DEM extraction method were evaluated. One was an analytical photogrammetric technique, and the other was a SAR interferometric processing. From the experiment, we found that the photogrammetric technique is currently the most suitable method considering topographic conditions of Korea. In the SAR interferometry technique, we also conclude that the problems caused by decorrelations due to the temporal reasons and due to the scattering effects from vegetation should be solved.

  • PDF

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

SATELLITE MONITORING OF OIL SPILLS CAUSED BY THE HEBEI SPIRIT ACCIDENT

  • Yang, Chan-Su;Yeom, Gi-Ho;Chang, Ji-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.368-368
    • /
    • 2008
  • Oil spills are a principal factor of the ocean pollution. The complicated problems involved in detecting oil spills are usually due to varying wind and sea surface condition such as ocean wave and current. The Hebei Spirit accident was happened in the west sea ($36^{\circ}$41'04" N, $126^{\circ}$03'12" E) near about 8 km distant from Tae-An, Korea on December 7, 2007. The aim of this work is to improve the detection and classification performance in order to define a more accurate training set and identifying the feature of oil spill region. This paper deals with an optimization technique for the detection and classification scheme using multi-frequency and multi-polarization SAR and optical image data sets of the oil spilled sea. The used image data are the ENVISAT ASAR WS and Radarsat-1 of C-band and ALOS PALSAR of L-band SAR data and KOMPSAT-2 optical images together with meteorological or oceanographic data. Both the theory and the experimental results obtained are discussed.

  • PDF

Water resources monitoring technique using multi-source satellite image data fusion (다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발)

  • Lee, Seulchan;Kim, Wanyub;Cho, Seongkeun;Jeon, Hyunho;Choi, Minhae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.497-508
    • /
    • 2023
  • Agricultural reservoirs are crucial structures for water resources monitoring especially in Korea where the resources are seasonally unevenly distributed. Optical and Synthetic Aperture Radar (SAR) satellites, being utilized as tools for monitoring the reservoirs, have unique limitations in that optical sensors are sensitive to weather conditions and SAR sensors are sensitive to noises and multiple scattering over dense vegetations. In this study, we tried to improve water body detection accuracy through optical-SAR data fusion, and quantitatively analyze the complementary effects. We first detected water bodies at Edong, Cheontae reservoir using the Compact Advanced Satellite 500(CAS500), Kompsat-3/3A, and Sentinel-2 derived Normalized Difference Water Index (NDWI), and SAR backscattering coefficient from Sentinel-1 by K-means clustering technique. After that, the improvements in accuracies were analyzed by applying K-means clustering to the 2-D grid space consists of NDWI and SAR. Kompsat-3/3A was found to have the best accuracy (0.98 at both reservoirs), followed by Sentinel-2(0.83 at Edong, 0.97 at Cheontae), Sentinel-1(both 0.93), and CAS500(0.69, 0.78). By applying K-means clustering to the 2-D space at Cheontae reservoir, accuracy of CAS500 was improved around 22%(resulting accuracy: 0.95) with improve in precision (85%) and degradation in recall (14%). Precision of Kompsat-3A (Sentinel-2) was improved 3%(5%), and recall was degraded 4%(7%). More precise water resources monitoring is expected to be possible with developments of high-resolution SAR satellites including CAS500-5, developments of image fusion and water body detection techniques.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.

COSMO-SkyMed 2 Image Color Mapping Using Random Forest Regression

  • Seo, Dae Kyo;Kim, Yong Hyun;Eo, Yang Dam;Park, Wan Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.319-326
    • /
    • 2017
  • SAR (Synthetic aperture radar) images are less affected by the weather compared to optical images and can be obtained at any time of the day. Therefore, SAR images are being actively utilized for military applications and natural disasters. However, because SAR data are in grayscale, it is difficult to perform visual analysis and to decipher details. In this study, we propose a color mapping method using RF (random forest) regression for enhancing the visual decipherability of SAR images. COSMO-SkyMed 2 and WorldView-3 images were obtained for the same area and RF regression was used to establish color configurations for performing color mapping. The results were compared with image fusion, a traditional color mapping method. The UIQI (universal image quality index), the SSIM (structural similarity) index, and CC (correlation coefficients) were used to evaluate the image quality. The color-mapped image based on the RF regression had a significantly higher quality than the images derived from the other methods. From the experimental result, the use of color mapping based on the RF regression for SAR images was confirmed.

New Generation of Imaging Radars for Earth and Planetary Science Applications

  • Wooil M. Moon
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • SAR (Synthetic Aperture Radar) is an imaging radar which can scan and image Earth System targets without solar illumination. Most Earth observation Shh systems operate in X-, C-, S-, L-, and P-band frequencies, where the shortest wavelength is approximately 1.5 cm. This means that most opaque objects in the SAR signal path become transparent and SAR systems can image the planetary surface targets without sunlight and through rain, snow and/or even volcanic ash clouds. Most conventional SAR systems in operation, including the Canada's RADARSAT-1, operate in one frequency and in one polarization. This has resulted in black and with images, with which we are familiar now. However, with the launching of ENVTSAT on March 1 2002, the ASAR system onboard the ENVISAT can image Earth's surface targets with selected polarimetric signals, HH+VV, HH+VH, and VV+HV. In 2004, Canadian Space Agency will launch RADARSAT-II, which is C-band, fully polarimetric HH+VV+VH+HV. Almost same time, the NASDA of Japan will launch ALOS (Advanced land Observation Satellite) which will carry L-band PALSAR system, which is again fully polarimetric. This means that we will have at least three fully polarimetric space-borne SAR system fur civilian operation in less than one year. Are we then ready for this new all weather Earth Observation technology\ulcorner Actual imaging process of a fully polarimetric SAR system is not easy to explain. But, most Earth system scientists, including geologists, are familiar with polarization microscopes and other polarization effects in nature. The spatial resolution of the new generation of SAR systems have also been steadily increased, almost to the limit of highest optical resolution. In this talk some new applications how they are used for Earth system observation purpose.

  • PDF

Characteristics of the SAR Images and Interferometric Phase over Oyster Sea Farming Site (굴 양식장에서의 SAR 영상 및 간섭위상 특성)

  • 김상완;이창욱;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.209-220
    • /
    • 2002
  • We carried out studies on SAR image intensity and interferometric phase over oyster sea farms. Strong backscattering was observed in amplitude images, and that was considered as a radar signal double bouncing from horizontal bars. These sea farming structures are not visible in satellite optical images except IKONOS image, so that it demonstrates the value of radar remote sensing as an effective tool in support of sea farm detection. The intensity of the image is sensitive to system parameters including wavelength, polarization, and look direction, but does not correlate to tide height. We found that the strongest backscattering can be obtained by L-band HH-polarization with a look direction perpendicular to the horizontal bar. We also succeeded in generating 21 coherent JERS-1 SAR interferometric pairs over the oyster farms. The general trend of the fringe rate of the interferometric phases appeared to be governed by altitude of ambiguity. The general trend was modeled by an inverse function and removed to have a residual phase. The residual phase showed a linear relation with the tide height. The results demonstrate for the first time that SAR can possibly be used to estimate sea level. However, the r.m.s. error of a regression line is 11.7 cm, and that is so far too large to make reliable assessments of sea level in practical applications. Further studies is required to improve the accuracy specifically using multi-polarization SAR data.

Observation of Ridge-Runnel and Ripples in Mongsanpo Intertidal Flat by Satellite SAR Imagery (인공위성 SAR 영상을 이용한 몽산포 조간대의 Ridge-Runnel 및 연흔 관찰)

  • Jang, So-Yeong;Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, we analyzed ridge-runnel structure and ripple marks by using Envisat ASAR, JERS-1 SAR images and in-situ data in Mongsanpo intertidal flat located in Taean-Gun, Korea. A group of light-and-dark lines parallel to the shoreline, alternating 3-5 times, were observed in the intertidal flat in Envisat ASAR images. The patterns are related to ridge-runnel structure in the intertidal flat exposed to air. Well-drained runnels, typically with ripple marks, showed strong backscattering while runnels submerged by surface water or ridges, typically smooth with no ripple, have weak backscattering coefficients in Envisat ASAR images. In JERS-1 SAR images, however, the backscattering was very low on the entire intertidal flat and no ridge-runnel structure could be observed. The wavelengths of ripple marks measured from in-situ observations have ranges from 4 to 10 cm that satisfies the Bragg scattering condition of the 1st-order in Envisat ASAR images operating in C-band, but not in JERS-1 SAR that used L-band. Through this study using SAR images, we could successfully analyze the sedimentary conditions of intertidal flats with ridge-runnel and ripple marks which are not easily observed by optical sensors. It is expected that the results of this study with SAR images will contribute to the sedimentary research over intertidal flats.