• Title/Summary/Keyword: opportunistic human pathogen

Search Result 32, Processing Time 0.021 seconds

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa (녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석)

  • Park, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.

Analysis of Quorum Sensing-Related Phenotypes of Pseudomonas aeruginosa Clinical Isolates (녹농균 임상균주의 쿼럼 센싱 관련 표현형 분석)

  • Jung, Kyung-Ju;Choi, Yu-Sang;Ha, Chang-Wan;Shin, Jeong-Hwan;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.240-247
    • /
    • 2010
  • Pseudomonas aeruginosa is a Gram (-) opportunistic human pathogen causing a wide variety of infections on lung, urinary tract, eyes, and burn wound sites and quorum sensing (QS), a cell density-sensing mechanism plays an essential role in Pseudomonas pathogenesis. In order to investigate the importance of QS in the Pseudomonas infections of Korean patients, we isolated 189 clinical strains of P. aeruginosa from the patients in Pusan Paik Hospital, Busan, South Korea. The QS signal production of these clinical isolates was measured by signal diffusion assay on solid media using reporter strains. While most clinical strains (79.4%) produced the QS signals as similar level as a wild type strain, PAO1 did, where LasR, the initial QS signal sensor-regulator was fully activated, a minority of them (4.2%) produced much less QS signals at the level to which LasR failed to respond. Similarly, while 72.5% of the clinical isolates produced QS signals enough to activate QscR, an another QS signal sensor-regulator, some few of them (9%) produced the QS signals at much lower level where QscR was not activated. For further analysis, we selected 74 clinical strains that were obtained from the patients under suspicion of Pseudomonas infection and investigated the total protease activity that is considered important for virulence. Interestingly, significant portion of them showed very low protease activity (44.6%) or no detectable protease activity (12.2%). When the biofilm-forming ability that is considered very important in chronic infection was examined, most isolates showed lower biofilm-forming activity than PAO1. Similarly, significant portion of clinical isolates showed reduced motility (reduced swarming activity in 51.4% and reduced twitching activity in 41.9%), or non-detectable motility (swarming-negative in 28.4% and twitching-negative in 28.4%). Our result showed that the clinical isolates that produced QS signals at the similar level to wild type could have significantly reduced activities in the protease production, biofilm formation, and motility, and some clinical isolates had unique patterns of motility, biofilm formation, and protease production that are not correlated to their QS activity.