• Title/Summary/Keyword: opportunistic

Search Result 703, Processing Time 0.031 seconds

Performance Analysis of an Opportunistic Cooperative Diversity System with Impulsive Noise in Rayleigh Fading (레일레이 페이딩하에서 임펄시브 잡음을 갖는 기회전송 협동 다이버시티 시스템의 성능해석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.99-105
    • /
    • 2010
  • The most frequently used noise model for the performance analysis of a communication system is additive white Gaussian noise. However impulsive noise model is more practical for the real communication environments, currently the performance analysis of a communication system in impulsive noise is increasing. In this paper, therefore, the performance of a cooperative system, which is recently one of the most intensive research topics, is derived in impulsive noise. We analytically derive and compare the performance of two opportunistic cooperative diversity systems which have an amplify-and-forward (AF) relaying or a decode-and-forward (DF) relaying. It is noticed that the impulsive noise component is increases with decreasing the average number of impulses in impulsive noise, consequently the performance of two systems is degraded in high SNR region. Also it is shown that the performance of the opportunistic cooperative system with DF relaying is superior to that with AF relaying.

Contribution-Level-Based Opportunistic Flooding for Wireless Multihop Networks (무선 다중 홉 환경을 위한 기여도 기반의 기회적 플러딩 기법)

  • Byeon, Seung-gyu;Seo, Hyeong-yun;Kim, Jong-deok
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.791-800
    • /
    • 2015
  • In this paper, we propose the contribution-level-based opportunistic flooding in a wireless multihop network which achieves outstanding transmission efficiency and reliability. While the potential of the the predetermined relay node to fail in its receipt of broadcast packets is due to the inherent instability in wireless networks, our proposed flooding actually increases network reliability by applying the concept of opportunistic routing, whereby relay-node selection is dependent on the transmission result. Additionally, depending on the contribution level for the entire network, the proposed technique enhances transmission efficiency through priority adjustment and the removal of needless relay nodes. We use the NS-3 simulator to compare the proposed scheme with dominant pruning. The analysis results show the improved performance in both cases: by 35% compared with blind flooding from the perspective of the transmission efficiency, and by 20~70% compared to dominant pruning from the perspective of the reliability.

Opportunistic Channel State Information Feedback for Eigen based Scheduling in Multiuser MIMO Systems (다중 사용자 다중 입출력 시스템에서 고유값 기반 스케줄링을 위한 선택적 채널 정보 피드백 기법)

  • Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.6-12
    • /
    • 2009
  • In this paper, we propose the opportunistic channel state information feedback scheme for eigen based scheduling in multiuser MIMO systems. According to 3GPP SMC channel model, the system capacity of MU-MIMO systems is severly degraded, since the antennas are highly correlated in urban macro cell. Although the eigen based scheduling scheme mitigates the adverse effect of the antenna correlation, it achieves only small amount of the multiuser diversity gain. Since the opportunistic channel state information scheme can achieve sufficient multiuser diversity gain, the system capacity of MU-MIMO systems can be improved. The system capacity improvement is verified by the computer simulation results.

Performance Analysis of a Double Opportunistic Cooperative Diversity System with Uniform Power Relay Selection (균일전력 릴레이 선택방식을 적용한 이중 기회전송 협동 다이버시티 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.15-21
    • /
    • 2011
  • Cooperative diversity system can be applied to an ad-hoc network for reduction of the power consumption, for expansion of the communication range, and for improving the system performance. In a selection relay cooperative diversity system which selects the maximal SNR(Signal-to-noise ratio) relay for transmitting the source information, the selected strong relay transmits continuously under slow fading channel, consequently it reduces the network lifetime. To overcome this defect, recently the uniform power relay selection has been studied to expand the network life time. We apply the uniform power relay selection to a DOT(Double opportunistic transmit) cooperative system that select the transmit relays, of which the SNR of the transmit relays exceed both of the source-relay and the relay-destination threshold. And the performance of the system is analytically derived. The performance comparisons are made among SC(Selection combining), MRC(Maximal ratio combining), and uniform power relay selection of the cooperative diversity system. We noticed that the performance of the uniform power relay selection is inferior to that of others. It is interpreted that the uniform transmit opportunity to the selected relays for extension of the network lifetime degrades the performance.

Message Delivery Techniques using Group Intimacy Information among Nodes in Opportunistic Networks (기회주의적 네트워크에서 노드의 그룹 친밀성 정보를 이용한 메시지 전달 기법)

  • Kim, Seohyang;Oh, Hayoung;Kim, Chongkwon
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.929-938
    • /
    • 2015
  • In opportunistic networks, each message is delivered to the destination by repeating, storing, carrying, and forwarding the message. Recently, with the vitalization of social networks, a large number of existing articles have shown performance improvement when delivering the message and considering its social relational networks. However, these works only deliver messages when they find nodes, assuming that every node cooperates with each other unconditionally. Moreover, they only consider the number of short-term contacts and local social relations, but have not considered each node's average relation with the destination node. In this paper, we propose novel message sending techniques for opportunistic networks using nodes' social network characteristics. In this scheme, each message is delivered to the destination node with fewer copies by delivering it mostly through nodes that have high intimacy with the destination node. We are showing that our proposed scheme presents a 20% performance increase compared to existing schemes.

Opportunistic Spectrum Access Based on a Constrained Multi-Armed Bandit Formulation

  • Ai, Jing;Abouzeid, Alhussein A.
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.134-147
    • /
    • 2009
  • Tracking and exploiting instantaneous spectrum opportunities are fundamental challenges in opportunistic spectrum access (OSA) in presence of the bursty traffic of primary users and the limited spectrum sensing capability of secondary users. In order to take advantage of the history of spectrum sensing and access decisions, a sequential decision framework is widely used to design optimal policies. However, many existing schemes, based on a partially observed Markov decision process (POMDP) framework, reveal that optimal policies are non-stationary in nature which renders them difficult to calculate and implement. Therefore, this work pursues stationary OSA policies, which are thereby efficient yet low-complexity, while still incorporating many practical factors, such as spectrum sensing errors and a priori unknown statistical spectrum knowledge. First, with an approximation on channel evolution, OSA is formulated in a multi-armed bandit (MAB) framework. As a result, the optimal policy is specified by the wellknown Gittins index rule, where the channel with the largest Gittins index is always selected. Then, closed-form formulas are derived for the Gittins indices with tunable approximation, and the design of a reinforcement learning algorithm is presented for calculating the Gittins indices, depending on whether the Markovian channel parameters are available a priori or not. Finally, the superiority of the scheme is presented via extensive experiments compared to other existing schemes in terms of the quality of policies and optimality.

A Social Motivation-aware Mobility Model for Mobile Opportunistic Networks

  • Liu, Sen;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Lin, Yaguang;Yang, Yunhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3568-3584
    • /
    • 2016
  • In mobile opportunistic networks (MONs), human-carried mobile devices such as PDAs and smartphones, with the capability of short range wireless communications, could form various intermittent contacts due to the mobility of humans, and then could use the contact opportunity to communicate with each other. The dynamic changes of the network topology are closely related to the human mobility patterns. In this paper, we propose a social motivation-aware mobility model for MONs, which explains the basic laws of human mobility from the psychological point of view. We analyze and model social motivations of human mobility mainly in terms of expectancy value theory and affiliation motivation. Furthermore, we introduce a new concept of geographic functional cells, which not only incorporates the influence of geographical constraints on human mobility but also simplifies the complicated configuration of simulation areas. Lastly, we validate our model by simulating three real scenarios and comparing it with reality traces and other synthetic traces. The simulation results show that our model has a better match in the performance evaluation when applying social-based forwarding protocols like BUBBULE.

Power Allocation Schemes For Downlink Cognitive Radio Networks With Opportunistic Sub-channel Access

  • Xu, Ding;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1777-1791
    • /
    • 2012
  • This paper considers a downlink cognitive radio (CR) network where one secondary user (SU) and one primary user (PU) share the same base station (BS). The spectrum of interest is divided into a set of independent, orthogonal subchannels. The communication of the PU is of high priority and the quality of service (QoS) is guaranteed by the minimum rate constraint. On the other hand, the communication of the SU is of low priority and the SU opportunistically accesses the subchannels that were previously discarded by the PU during power allocation. The BS assigns fractions ?? and 1 ?? of the total available transmit power to the PU and the SU respectively. Two power allocation schemes with opportunistic subchannel access are proposed, in which the optimal values of ??'s are also obtained. The objective of one scheme is to maximize the rate of the SU, and the objective of the other scheme is to maximize the sum rate of the SU and the PU, both under the PU minimum rate constraint and the total transmit power constraint. Extensive simulation results are obtained to verify the effectiveness of the proposed schemes.

Channel Statistical MAC Protocol for Cognitive Radio

  • Xiang, Gao;Zhu, Wenmin;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. A dynamical sensing range as a important parameter introduced to maintain the our protocol performance. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.