• 제목/요약/키워드: opioid receptor agonist

검색결과 45건 처리시간 0.032초

암환자의 마약성 진통제에 대한 신체적 의존을 경피적 Buprenorphine 패취를 통해 성공적으로 치료한 증례보고 (Successful Treatment with Transdermal Buprenorphine Patch in Opioid-Dependent Cancer Patients: Case Series)

  • 고세일;김정훈;이경원;강정훈
    • Journal of Hospice and Palliative Care
    • /
    • 제21권4호
    • /
    • pp.152-157
    • /
    • 2018
  • 암환자에서 암성 통증을 완화시키기 위한 강한 마약성 진통제의 사용이 늘어남에 따라, 마약성 진통제 관련 이상행동이 새로운 문제로 대두되고 있다. 비암성 환자에서의 마약성 진통제에 대한 중독 및 신체적 의존의 치료는 잘 알려져 있으나, 암환자, 특히 국내의 암환자에서는 이와 관련한 연구가 부족한 실정이다. 본 저자들은 강한 마약성 진통제에 대해 신체적 의존을 보여 부분 뮤-아편양 수용체 작용제인 buprenorphine으로 성공적으로 치료 받았던 열 명의 암환자들을 보고하고자 한다. 이는 암환자의 마약성 진통제에 대한 신체적 의존을 경피적 buprenorphine 패취로 치료할 수 있음을 보여준 첫 번째 보고이다.

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Influence of Naloxone on Catecholamine Release Evoked by Nicotinic Receptor Stimulation in the Isolated Rat Adrenal Gland

  • Kim Ok-Min;Lim Geon-Han;Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.699-708
    • /
    • 2005
  • The present study was designed to investigate the effect of naloxone, a well known opioid antagonist, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal glands, and to establish its mechanism of action. Naloxone ($10^{-6}\~10^{-5}$ M), perfused into an adrenal vein for 60 min, produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh ($5.32\times10^{-3}$ M), high K+ ($5.6\times10^{-2}$ M), DMPP ($10^{-4}$ M) and McN-A-343 ($10^{-4}$ M). Naloxone itself also failed to affect the basal CA output. In adrenal glands loaded with naloxone ($3\times10^{-6}$ M), the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, were also inhibited. In the presence of met-enkephalin ($5\times10^{-6}$ M), a well known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Taken together, these results suggest that naloxone greatly inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that these inhibitory effects of naloxone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Tapentadol: Can It Kill Two Birds with One Stone without Breaking Windows?

  • Chang, Eun Jung;Choi, Eun Ji;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제29권3호
    • /
    • pp.153-157
    • /
    • 2016
  • Tapentadol is a novel oral analgesic with a dual mode of action as an agonist of the ${\mu}$-opioid receptor (MOR), and as a norepinephrine reuptake inhibitor (NRI) all in a single molecule. Immediate release (IR) tapentadol shows its analgesic effect quickly, at around 30 minutes. Its MOR agonistic action produces acute nociceptive pain relief; its role as an NRI brings about chronic neuropathic pain relief. Absorption is rapid, with a mean maximal serum concentration at 1.25-1.5 h after oral intake. It is present primarily in the form of conjugated metabolites after glucuronidation, and excretes rapidly and completely via the kidneys. The most common adverse reactions are nausea, dizziness, vomiting, and somnolence. Constipation is more common in use of the ER formulation. Precautions against concomitant use of central nervous system depressants, including sedatives, hypnotics, tranquilizers, general anesthetics, phenothiazines, other opioids, and alcohol, or use of tapentadol within 14 days of the cessation of monoamine oxidase inhibitors, are advised. The safety and efficacy have not been established for use during pregnancy, labor, and delivery, or for nursing mothers, pediatric patients less than 18 years of age, and cases of severe renal impairment and severe hepatic impairment. The major concerns for tapentadol are abuse, addiction, seeking behavior, withdrawal, and physical dependence. The presumed problem for use of tapentadol is to control the ratio of MOR agonist and NRI. In conclusion, tapentadol produces both nociceptive and neuropathic pain relief, but with worries about abuse and dependence.

Haloperidol 장기 투여된 Mouse Striatum에서 cAMP양에 미치는 Opiates의 영향 (The Changes of Cyclic AMP Content by Opiates in Chronic Haloperidol Treated Mouse Striatum)

  • 김수경
    • 대한약리학회지
    • /
    • 제30권1호
    • /
    • pp.11-18
    • /
    • 1994
  • Opioid수용체는 adenylate cyclase의 활성을 억제하므로써 cyclic AMP의 양을 감소시킨다. 본 연구에서는 striatum에서 dopamine과 opioid 신경전달계의 상호관계를 알아보고자 haloperidol(750ug/kg)을 10일간 복강내 투여하여 dopaminergic pathway를 차단시킨후 mouse striatum에서 선택적 opioid ${\mu},\;{\gamma}\;{\kappa}$ 수용체 agonist들에 의해 축적되는 cAMP양을 측정하여 본 결과, haloperidol단독투여에 의해서 cAMP는 유의한 증가를 나타내었으며, haloperidol 장기투여된 mouse striatum 에서 morphine(20mg/kg), DAGO(5Oug/kg), DPDPE(50ug/kg), U5O,488H (500ug/kg)투여에 의해서 haloperidol에 의한 cAMP 증가는 억제되었으며, 정상 mouse에 투여된 morphine, DAGO, DPDPE, U5O,488H에 비해서는 DAGO, DPDPE 투여군에서 증가를 나타내었다. Haloperidol장기투여로 인한 morphine, DAGO, DPDPE, U5O,488H의 영향은 naloxone에 의해서 morphine과 U5O, 488H투여군에서 길항되었으며 정상 mouse에 투여된 morphine, DAGO, DPDPE, U5O,488H에 의한 cAMP의 감소는 naloxone에 의하여 모든 실험군에서 길항되었다. 이상의 결과로 보아 dopaminergic denervation시 mouse striatum에서 ${\mu},\;{\gamma},\;{\kappa}$효현제에 의하여 축적되는 cAMP양은 ${\kappa}$수용체 효현제인 U5O,488H에서 가장 현저한 감소를 보여 각 수용체의 활성화정도는 변화되며, 그중에서 ${\kappa}$수용체는 그 기능이 가장 보존되고 있음을 알 수 있었다.

  • PDF

The effect of μ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn

  • Kim, Yoo Rim;Shim, Hyun Geun;Kim, Chang-Eop;Kim, Sang Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.419-425
    • /
    • 2018
  • The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of ${\mu}$-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective ${\mu}$-opioid agonist, [$D-Ala^2$, $NMe-Phe^4$, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by $K^+$ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.

Glucosylsphingosine Induces Itch-Scratch Responses in Mice

  • Kim, Hyoung-June;Kim, Kwang-Mi;Noh, Min-Soo;Yoo, Hye-Jin;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.316-320
    • /
    • 2010
  • Pruritus is one of major symptoms in atopic dermatis. The pathophysiological mechanism of pruritus is unclear. The search for pruritogen is important in elucidating the pathophysiological mechanism of pruritus in atopic dermatitis. Glucosylsphingosine (Gsp) is upregulated in the strateum corneum of atopic dermatitis patients. We investigated to determine whether Gsp induces itch-scratch responses (ISRs) in mice. Intradermal administration of Gsp induces ISRs. Gsp dose-dependently induced scratching response at 50-500 nmol/site range. Pretreatment with naltrexone, an opioid $\mu$ receptor antagonist, and capsaicin, a TrpV1 receptor agonist, inhibited Gsp-induced ISRs. Additionally, Gsp-induced ISRs were also suppressed by cyproheptadine, an antagonist of serotonin receptor. These findings suggest that Gsp-induced scratching might be at least partly mediated by capsaicin-sensitive primary afferents, and the opioids receptor systems might be involved in transmission of itch signaling in the central nervous system. Furthermore, our findings suggest that Gsp-induced ISRs may be attributable to the serotonin-mediated pathways and Gsp is not any more one of byproducts of abnormal skin barrier but can lead to induce pruritus, one of typical symptoms of atopic dermatitis.

인삼의 항마약 효과 (Antinarcotic Effect of Panax ginseng)

  • Hack Seang Kim;Ki
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.178-186
    • /
    • 1990
  • The analgesic effect of morphine was antagonized and the development of tolerance was suppressed by the modification of the neurologic function in the animals treated with ginseng saponins The activation of the spinal descending inhibitory systems as well as the supraspinal structures by the administration of morphine was inhibited in the animals treated with ginseng saponine intracerebrally or intrathecally. The development of morphine tolerance and dependence, and the abrupt expression of naloxone inducted abstinence syndrom were also inhibited by ginsenoside Rb1, Rb2, Rg1 and Re. These results suggest that ginsenoside Rbl, Hbs, Rgl and Re are the bioactive components of panax ginseng on the inhibition of the development of morphine tolerance and dependence, and the inhibition of abrupt abstinence sindrome. In addition, further research on the minor components of Pnnnxkinsenl should be investigated. A single or daily treatment with ginseng saponins did not induce any appreciable changes in the brain in level of monoamines at the variolls time intervals and at the various day intervals, respectively. The inhibitory or facilitated effects of ginseng saponins on electrically evoked contractions in guinea pig ileum ($\mu$-receptor) and mouse vats deferens ($\delta$-receptor) were not mediated through opioid receptors. The antagonism of a $\chi$ receptor agonist, U-50, 488H was also not mediated through opioid receptors in the animals treated with ginseng saponins, but mediated through serotonergic mechanisms. Ginseng saponins inhibited morphine 6-dehydrogenase which catalyzed the production of morphinone from morphine, and increased hepatic glutathione contents for the detoxication of morphinone. This result suggests that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and dependence.

  • PDF

누리장나무의 진통 효과 (Anti-nociceptive Effects of Clerodendrum Trichotomum)

  • 정경로;이병수;김명수;고희재;양우인;전용덕;안지혜;차동석;권진;전훈
    • 생약학회지
    • /
    • 제54권2호
    • /
    • pp.61-65
    • /
    • 2023
  • Clerodendrum trichotomum has been widely used as a traditional medicine for the treatment of numerous diseases, including pain management. However, there have been extremely limited pharmacological and phytochemical studies on Clerodendrum trichotomum up to now. In this study, we investigated the effects of the methanolic extract of Clerodendrum trichotomum (MCT) on nociceptive pain in mice. Our finding demonstrate that MCT treatment significantly extended the latency time in both the tail-immersion test and hot-plate test. Additionally, MCT treatment reduced acetic acid-induced writhing motions. These results suggest that MCT possesses strong anti-nociceptive activities against thermal and chemical nociception. In the formalin test, mice fed with MCT exhibited reduced licking time during both the early and late phases, thereby confirming the therapeutic potential of MCT in central and peripheral nociception. Furthermore, in combination tests using naloxone, the MCT-mediated anti-nociception was slightly reduced, indicating that MCT might act as a partial opioid receptor agonist. Based on these results, MCT may be a valuable candidate for the development of anti-nociceptive agents.

Pyrrosia lingua Reduces Nociception in Mouse

  • Lim, Hyun Ju;Kwon, Jin;Jeon, Hoon
    • Natural Product Sciences
    • /
    • 제20권4호
    • /
    • pp.285-289
    • /
    • 2014
  • Pyrrosia lingua has been widely used as a traditional medicine for the treatment of lots of diseases including pain management. However pharmacological and phytochemical studies on its anti-nociceptive properties are extremely limited. In this work, we investigated the effects of methanol extract of Pyrrosia lingua (MPL, 250 and 500 mg/kg) on the both of central and peripheral nociceptive pain. The results from tail-immersion test and hotplate test revealed that MPL has potent anti-nociceptive effects on thermal nociception. In addition, MPL efficiently reduced the acetic acid-induced chemical nociception compared to indomethacin. We also carried out formalin test and MPL reduced formalin-induced pain response on both phases, suggesting MPL has antinociceptive activities on the central and peripheral pain. In combination test using naloxone, anti-nocicpetive activity of MPL was reduced, indicating that MPL acts as a partial opioid receptor agonist. These results suggest that MPL may be possibly used as a valuable natural product-derived painkiller.