• 제목/요약/키워드: opinion mining

검색결과 272건 처리시간 0.024초

아이디어 마이닝 분야에서 문헌과 웹페이지의 아이디어 발췌에 대한 연구 (A Study on Extracting Ideas from Documents and Webpages in the Field of Idea Mining)

  • 이태영
    • 정보관리학회지
    • /
    • 제29권1호
    • /
    • pp.25-43
    • /
    • 2012
  • 일반적인 문헌/문서나 웹페이지에서 창조에 도움이 되는 아이디어와 준아이디어를 색출하기 위하여 아이디어 마이닝 기법을 적용하였다. 아이디어 마이닝과 의견 마이닝 및 논제 신호 마이닝에서 사용하는 발췌 기법으로 웹 페이지, 문헌, 문서 등에 포함되어 있는 아이디어를 발췌하였다. 발췌 기법을 (1) 결정적 단서 어구, (2) 단서 멀티미디어, (3) 문맥 신호, 및 (4) 담화 구절 방법으로 정리하여 7가지 아이디어 유형 -사상, 계획, 의견, 글, 그림, 소리, 공식 별로 실험하였다. 각 기법들의 효율성은 재현율과 정확률을 혼합한 F 측정값으로 판단하였고 (1), (3), (4) 방법은 대체로 긍정적인 평가를 얻었다. 특히, 결정적 단서 어구는 아이디어 적출에 문맥 신호는 준아이디어 추출에 효과적인 것으로 판단되었다.

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.

Text Mining and Visualization of Papers Reviews Using R Language

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.170-174
    • /
    • 2017
  • Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.

구글과 바이두 검색엔진의 개인정보에 대한 감성분석과 마이닝 (Current State of the Art and Review of Google and Baidu Search Engines' Privacy Policies Using Sentiment Analysis and Opinion Mining)

  • 이가베;이효맹;유효문;강선경;이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.158-159
    • /
    • 2017
  • 감성분석은 의사 소통에서 감정이나 느낌의 측정을 결정하기 위해 서면 또는 구두로 의사 소통을 검토하는 것이다. 검색 엔진은 인터넷에서 방문한 가장 인기있는 사이트 중 하나이며 전세계에서 수십억 건의 조회가 발생한다. 이러한 검색 사이트와 관련된 개인 정보 취급 방침은 분명히 중요하다. 본 연구는 두 개의 가장 큰 검색 엔진 인 Google과 Baidu의 개인 정보 보호 정책을 검토하여 개인정보 보호 정책의 전반적인 정서를 결정한다. 몇 가지 정서 및 의견 분석 방법을 사용하여 중요한 개인적인 발견과 중요한 차이가 발견하여 향후 이를 이용한 정책반영에 활용할 수 있다.

  • PDF

오케스트라 동아리 참여 대학생의 성취도 및 만족도 조사 - 통계적 방법과 오피니언 마이닝의 융합적 측면 (Achievement and satisfaction research of the undergraduate orchestra club activities - A convergent aspects of statistical method and opinion mining)

  • 최수이;최경호
    • 한국융합학회논문지
    • /
    • 제6권4호
    • /
    • pp.25-31
    • /
    • 2015
  • 일반적으로 학생 오케스트라 활동은 창의력과 감수성을 개발시켜 청소년기의 학생들에게 올바른 취미생활을 제공함으로써 사회적 정서적 불안감을 해소시켜 주고 소속감을 갖는 등 안정감을 주는 것으로 알려져 있다. 이에 본 연구에서는 대학생들에게도 오케스트라 동아리 활동이 비슷한 결과를 야기하는지에 대하여 알아보았다. 그 결과 청소년기의 학생들과는 달리, 오케스트라 동아리 활동 자체에 대한 성취도는 높으나, 사회성이나 자신감 향상에는 크게 도움이 되지는 못하는 것으로 나타났다. 그러함에도 불구하고 긍정적인 요소들도 있고 또한 빅데이터를 활용한 인식분석(오피니언 마이닝) 등을 통해 보았을 때 분명히 긍정적인 요소가 있는 만큼, 대학생 오케스트라 활동에 대해서도 국가차원의 지원이 있어야 하겠다.

인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화 (Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign)

  • 장경애;박상현;김우제
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.512-521
    • /
    • 2015
  • 네티즌은 인터넷을 통해서 상품을 구매하고 상품에 대한 감정을 긍정 혹은 부정으로 상품평에 표현한다. 상품평에 대한 분석은 잠재적 소비자뿐만 아니라 기업의 의사결정에 중요한 자료가 된다. 따라서 인터넷의 대량 리뷰에서 의미 있는 정보를 분석하여 의견을 도출하는 오피니언 마이닝 기술의 중요성이 증대되고 있다. 기존의 연구는 대부분이 영어를 기반으로 진행되었고 아직 한글에 대한 상품평 분석은 활발히 이루어 지지 않고 있다. 또한 한글은 영어와 달라 꾸미는 말과 어미가 복잡한 특성을 갖고 있다. 그리고 기존의 연구는 통계적 기법, 사전 기법, 기계학습 기법 등을 사용하여 연구되었으나 인터넷 언어의 특성을 감안하지는 못하였다. 본 연구에서는 감정이 포함된 인터넷 언어의 특성을 분석하여 감정분석의 정확률을 높이는 감정분류 방법을 제안한다. 이를 통해 데이터에 독립적인 인터넷 감정기호를 이용해서 자동으로 긍정 및 부정 상품평을 분류할 수 있었고 높은 정확률, 재현율, Coverage 결과를 통해서 제안 알고리즘의 유효성을 확인할 수 있었다.

텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석 (Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining)

  • 정진명;박영호
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-48
    • /
    • 2022
  • 디지털 기술의 발전으로 사회적 이슈들이 SNS와 같은 디지털 기반 플랫폼을 통해서 소통되고 여론을 형성하기도 한다. 본 연구에서는 소셜미디어를 통해서 공유되고 있는 정보보호 이슈관련 여론을 살펴보기 위하여 대표적인 단문 소셜네트워크서비스인 트위터 빅데이터 분석을 진행하였다. 2021년 1년간 14개 정보보호 관련 키워드를 중심으로 데이터를 수집한 후, 데이터마이닝 기술을 활용하여 용어 빈도(TF)분석과 피어슨 계수를 활용한 상관분석을 통해 키워드간의 상관관계를 밝혔다. 또한 잠재적 확률기반 LDA 토픽모델링을 실시하여 정보보호분야에 많은 관심을 받았던 6개의 주요 토픽을 도출하였다. 이러한 결과는 관련 산업의 전략수립이나, 정부 정책수립 시 주요 키워드를 도출하는 기초데이터로 활용될 수 있을 것으로 기대된다.

물류공동화 활성화를 위한 빅데이터 마이닝 적용 연구 : AHP 기법을 중심으로 (Study on the Application of Big Data Mining to Activate Physical Distribution Cooperation : Focusing AHP Technique)

  • 박영현;이재호;김경우
    • 무역학회지
    • /
    • 제46권5호
    • /
    • pp.65-81
    • /
    • 2021
  • The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.

빅데이터 분석과 헬스케어에 대한 동향 (A review of big data analytics and healthcare)

  • 문석재;이남주
    • 한국응용과학기술학회지
    • /
    • 제37권1호
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

k-Structure를 이용한 한국어 상품평 단어 자동 추출 방법 (Automatic Extraction of Opinion Words from Korean Product Reviews Using the k-Structure)

  • 강한훈;유성준;한동일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권6호
    • /
    • pp.470-479
    • /
    • 2010
  • 감정어 추출과 관련하여 기존 영어권 연구에서 제시된 방법의 대부분은 한국어에 직접 적용이 쉽지 않다. 한국어권 연구에서 제시된 방법 중 수작업에 의한 방법은 감정어 추출에 많은 시간이 걸린다는 문제점이 있다. 영어 시소러스 기반 한국어 감정어 추출 기술은 한국어와 영어 단어간 일대일 부정합에서부터 기인하는 정확도의 저하를 제고해야 하는 과제를 갖고 있다. 한국어 구문 분석기를 기반으로 한 연구는 출현 빈도가 낮은 감정어를 선정하지 못할 수 있는 문제점을 내포하고 있다. 본 논문에서는 한국어 상품평 중 단순한 문장에서 감정어를 자동으로 추출하는 데 있어 기존에 제안된 한국어권 연구에 상호 보완적으로 정확도를 향상시킬 수 있는 k-Structure(k=5 또는 8) 기법을 제안한다. 단순한 문장이라 함은 패턴 길이를 최대 3으로 한다. 이는 평가 대상 상품(예를 들어 '카메라')의 속성 명 f (예를 들어 카메라의 '배터리')를 기준으로 ${\pm}2$의 거리에 감정어가 포함되어 있는 문장을 의미한다. 성능 실험은 국내 주요 쇼핑몰로부터 수집한 1,868개의 상품평을 대상으로 미리 주어진 8개의 속성 명에 대한 감정어를 k-Structure를 이용하여 자동으로 추출하고 그 정확도를 평가하였다. 그 결과, k=5일 경우 평균 79.0%의 재현률, 87.0%의 정확률을 보였고, k=8일 경우 평균 92.35%의 재현률, 89.3%의 정확률을 얻을 수 있었다. 또한, 영어권 연구에서 제안된 방법 중 PMI-IR(Pointwise Mutual Information-Information Retrieval) 기법을 이용하여 실험을 수행하였다. 이 결과, 평균 55%의 재현률과 57%의 정확률을 보였다.