• 제목/요약/키워드: operon

검색결과 283건 처리시간 0.019초

Characterization of the Plasmid-Encoded Arsenic Salts Resistance Determinant from Klebsiella oxytoca D12

  • Rhie, Ho-Gun;Lee, Sung-Jae;Lee, Ho-Sa
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.593-598
    • /
    • 2004
  • The arsenical resistance (ars) operon was cloned from a 67-kilobase pair (kb) plasmid, which was previously shown to be responsible for arsenic salts resistance in K. oxytoca D12. When plasmid pAE48, carrying the ars operon, was transformed into E. coli, transformed cells displayed enhanced survival in the presence of 4 mM arsenite, 50 mM arsenate, or 0.4 mM antimonite. The nucleotide sequence of the 5.6-kb fragment encoding arsenical resistance revealed five open reading frames (ORFs), which were predicted to encode polypeptides of 12.8 (arsR), 13.4 (arsD), 62.6 (arsA), 45 (arsB), and 16.7 (arse) kilodaltons (kDa). Each ORF was preceded by a ribosome binding site. A putative promoter-like sequence was identified upstream of arsR, and a possible termination site was found downstream of arsC. When the deduced amino acid sequences of the K. oxytoca Dl2 Ars proteins were compared with the amino acid sequences of the E. coli R773 Ars proteins, a significant amino acid similarity was observed (87.9% for ArsR, 89.2% for ArsD, 83.2% for ArsA, 92.6% for ArsB, and 91.3% for ArsC), suggesting an evolutionary relationship of the ars genes of E. coli plasmid R773 and K. oxytoca Dl2.

독성물질 검출을 위한 Plasmid Vector 개발

  • 최연주;유진삼;하진목;백형석
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.144-150
    • /
    • 1997
  • After DNA damage, umuDC is the only SOS operon that must be induced to promote SOS mutagenesis in Escherichia coli. The recombinant plasmid pBC401 and pBC402 were constructed to fuse the lac structural genes with promoter region of umuDC operon to induce the expression of lacZ gene by DNA damage. We transformed the plasmid pBC401 and pBC402 into E. coli MC1061, lacZ deleted strain and determined the activity of $\beta$-galactosidase for various mutagen; UV, mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroqunoline-1-oxide (NQO), ethyl methanesulfonate (EMS). The $\beta$-galactosidase activities of PBC401 and pBC402 for UV, MMC, and NQO were increased in proportion to expression time until 3 hours thereafter, the activities were constant or slightly decreased. The activities for MNNG and EMS were not so high as for UV, MMC, and NQO. When MNNG and EMS were treated, $\beta$-galactosidase activity of pBC402 was slightly lower than pBC401 but when UV, MMC, and NQO were treated in pBC402, $\beta$-galactosidase activity was slightly higher than in pBC401. Therefore, the pBC402 was better than the pBC401 in terms of sensitivity for frameshift mutagen. We suggest that the plasmid pBC401 and pBC402 are easy to detect mutagens which cause frameshift mutation rather than point mutation.

  • PDF

Molecular Mechanism of Copper Resistance in Pseudomonas syringae pv. tomato.

  • Cha, Jae-Soon;Donald A. Cooksey
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.97-117
    • /
    • 1995
  • Copper resistance in Pseudomonas syringae pv. tomato is determined by copper-resistance operon (cop) on a highly conserved 35 kilobase plasmid. Copper-resistant strains of Pseudomonas syringae containing the cop operon accumulate copper and develop blue clonies on copper-containing media. The protein products of the copper-resistance operon were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins CopA (72 kDa), CopB (39 kDa), and CopC (12 kDa) were produced only under copper induction. CopA and CopC were periplasmic proteins and CopB was an outer membrane protein. Leader peptide sequences of CopA, CopB, and CopC were confirmed by amino-terminal peptide sequencing. CopA, CopB, and CopC were purified from strain PT23.2, and their copper contents were determined. One molecule of CopA bound 10.9${\pm}$1.2 atoms of copper and one molecule of CopC bound 0.6${\pm}$0.1 atom of copper. P. syringae cells containing copCD or copBCD cloned behind the lac promoter were hypersensitive to copper. The CopD (32 kDa), a probable inner membrane protein, function in copper uptake with CopC. The Cop proteins apparently mediate sequestration of copper outside of the cytoplasm as a copper-resistance mechanism.

  • PDF

Characterization of the Pediocin Operon of Pediococcus acidilactici K10 and Expression of His-Tagged Recombinant Pediocin PA-1 in Escherichia coli

  • MOON GI SEONG;PYUN YU RYANG;KIM WANG JUNE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.403-411
    • /
    • 2005
  • The relationship between plasmid (~9.5 kb) and pediocin PA-1 in P. acidilactici K10 was confirmed by plasmid curing. The pediocin operon of P. acidilactici K10 was amplified by PCR (polymerase chain reaction), and the nucleotide sequence was analyzed. The sequence of the pediocin operon of P. acidilactici K10 was similar to those of P. acidilactici strains producing pediocin PA-1/ AcH. For the expression of pediocin PA-1 in E. coli, a pQEPED (pQE-30 Xa::mature pedA) was constructed. His-tagged recombinant pediocin PA-1 (-6.5 kDa) was translated by cell-free in vitro transcription and translation using pQEPED as a DNA template. Theresult of slot blotting assay showed that transcription of recombinant pedA in E. coli M15 was induced by the addition of isopropyl-$\beta$-D-thiogalactopyranoside (IPTG) at the final concentration of 1 mM. Although the recombinant pediocin PA-1 inhibited the growth of E. coli, it was expressed in the host strain and purified by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography under denaturing condition. This is the first report for the production and one-step purification of biologically active recombinant pediocin PA-1 in E. coli.

Cloning and Expression of the UDP-Galactose-4-Epimerase Gene (galE) Constituting the gal/lac Operon of Lactococcus lactis ssp. lactis ATCC7962

  • Lee, Jung-Min, Choi, Jae-Yeon;Lee, Jong-Hoon;Chang, Hae-Choon;Chung, Dae-Kyun;Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.393-397
    • /
    • 1999
  • The gene (galE) encoding UDP-galactose-4-epimerase, operative in the galactose metabolic pathway, was cloned together with the $\beta$-galactosidase gene (lacZ) from Lactococcus lactis ssp. lactis ATCC7962 (L. lactis 7962). galE was found to have a length of 981 bps and encoded a protein with a molecular mass of 36,209 Da. The deduced amino acid sequence showed a homology with GalE proteins from several other microorganisms. A Northern analysis demonstrated that galE was constitutively expressed by its own promoter. When galactose or lactose was added into medium, the galE transcription was induced by several upstream promoters. The structure of the gal/lac operon of L. lactis 7962 was partially characterized and the gene order around galE was galT-lacA-lacZ-galE-orfX.

  • PDF

Scarless Genomic Point Mutation to Construct a Bacillus subtilis Strain Displaying Increased Antibiotic Plipastatin Production

  • Jeong, Da-Eun;So, Younju;Lim, Hayeon;Park, Seung-Hwan;Choi, Soo-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.1030-1036
    • /
    • 2018
  • Bacillus strains produce various types of antibiotics, and random mutagenesis has traditionally been used to overproduce these natural metabolites. However, this method leads to the accumulation of unwanted mutations in the genome. Here, we rationally designed a single nucleotide substitution in the degU gene to generate a B. subtilis strain displaying increased plipastatin production in a foreign DNA-free manner. The mutant strain (BS1028u) showed improved antifungal activity against Pythium ultimum. Notably, pps operon deletion in BS1028u resulted in complete loss of antifungal activity, suggesting that the antifungal activity strongly depends on the expression of the pps operon. Quantitative real-time PCR and lacZ assays showed that the point mutation resulted in 2-fold increased pps operon expression, which caused the increase in antifungal activity. Likewise, commercial Bacillus strains can be improved to display higher antifungal activity by rationally designed simple modifications of their genome, rendering them more efficient biocontrol agents.

Identification of the σ70-Dependent Promoter Controlling Expression of the ansPAB Operon of the Nitrogen-Fixing Bacterium Rhizobium etli

  • Angelica, Moreno-Enriquez;Zahaed, Evangelista-Martinez;Luis, Servin-Gonzalez;Maria Elena, Flores-Carrasco
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1241-1245
    • /
    • 2015
  • The aim of the present work was to examine the putative promoter region of the operon ansPAB and to determine the general elements required for the regulation of transcriptional activity. The transcriptional start site of the ansPAB promoter was determined by using highresolution S1-nuclease mapping. Sequence analysis of this region showed -10 and -35 elements, which were consistent with consensus sequences for R. etli promoters that are recognized by the major form of RNA polymerase containing the σ70 transcription factor. Mutation studies affecting several regions located upstream of the transcriptional start site confirmed the importance of these elements on transcriptional expression.

발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현 (Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum)

  • 우영은;김소영;이찬용
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.306-311
    • /
    • 2005
  • Lumazine protein은 lux operon의 하류 영역에 존재하는 riboflavin synthase와 아미노산 상동성을 보일 뿐만 아니라, riboflavin synthase의 기질인 6,7-dimethyl-8-ribityllumazine (lumazine)과 결합하여 청록색의 형광을 내게 하는 형광 단백질이다. 발광세균 Photobacterium phosphoreum의 lumazine protein을 코드하는 유전자의 염기서열을 결정하였는데, 이 유전자는 lux operon의 656 bp 상류의 영역에 존재하며, lux operon과는 서로 반대 방향으로 전사되는 것으로 나타났다. 중합효소 연쇄 반응(PCR: Polymerase Chain Reaction)의 방법으로 아미노-말단 절반 lumazine protein을 코드하게 되는 유전자(lumP-N)를 클로닝하여 형질전환의 방법으로 대장균에 유전자를 전이시켜 이들의 유전자의 발현 양상을 조사하여 보았는바, lumP 전체 유전자(lumP-W)가 삽입되어 있는 재조합 플라스미드에서는 발현이 매우 미약한 반면에 아미노 -말단(lumP-N)이 들어있는 경우는 과발현됨을 보였다.

Serratia marcescens KCTC 2172로부터 pst operon의 클로닝 및 해석 (Molecular Cloning and Analysis of Phosphate Specific Transport (pst) Operon from Serratia marcescens KCTC 2172)

  • 이승진;이용석;이상철;박인혜;안순철;최용락
    • 생명과학회지
    • /
    • 제19권5호
    • /
    • pp.566-572
    • /
    • 2009
  • S. marcescens KCTC 2172로부터 유전자 은행을 작성하여 재조합 클론 pDH3를 얻었으며, pDH3 유래의 서브클론을 작성하였다. 플라스미드 pPH4의 전염기서열 5,137 bp 영역을 결정한 결과 3개의 ORF가 있음을 확인하였다. 이들은 pst 오페론의 pstC, pstA, 및 pstB, 세 유전자를 동일 전사방향으로 코드하고 있었다. 타 세균의 유전자와 비교한 결과 S. marcescens의 pst 오페론은 pstS와 phoU가 결손되어 있다. 조절영역에는 CRP 결합영역과 pho box 서열이 존재하였다. 보고된 유전자와 상동성 조사결과, PstC 단백질은 Yersinia sp., Vibrio sp. 및 Pseudomonas sp.와는 49, 37, 33%의 상동성을, PstA 단백질은 Yersinia sp., Vibrio sp. 및 Pseudomonas sp.와 64, 51, 47%의 상동성을, PstB 단백질은 Methanocaldococcus sp., E. coli 및 Mycoplasma sp.와 60, 50, 48%의 상동성을 나타내었다. Pst 유전자들은 조절영역의 cAMP-CRP 복합체에 의해 in vivo에서 양성적으로 발현됨을 확인하였다. Pst 오페론을 포함하는 플라스미드를 도입한 대장균은 인산운송에 관여하는 능력을 확인하였다.

Salmonella typhimurium cadBA 오페론의 발현에 관여하는 돌연변이체의 선별 및 그 특성 (Characterization of cadC and cadR Mutants in Mediating the Expression of the Salmonella typhimurium cadBA Operon)

  • 방성호;박용근
    • 미생물학회지
    • /
    • 제37권4호
    • /
    • pp.259-264
    • /
    • 2001
  • S. typhimurium cadBA operon의 발현에는 산성 pH와 고농도의 lysine 등 적어도 두 가지의 세포외부 신호가 요구된다. pH와 lysine신호에 따른 cadBA 발현 조절 기작을 이해하기 위하여, Tn10삽입, 자발적 돌연변이, EMS돌연변이 등을 수행하여 JF2238과 cadA-lacZ의 발현특성에 차이를 보이는 돌연변이체를 선별하였다. cadBA의 양성적 조절자의 유전자인 cadC내의 돌연변이 중 cadC4 돌연변이는 pH-비의존성, lysine-의존성 발현을, cadC6 돌연변이는 pH-비의존성, lysine-비의존성 cadA-lacZ 발현을 나타내었다. 산성 pH, lysine이 없는 조건에서 cadA-lacZ 발현을 유도하는 cadR::Tn10과 cadR3 돌연변이체를 분리하여 cadR이 lysine이 없는 조건에서 cadBA 발현을 음성적으로 조절하는 음성적 조절자의 유전자임을 알 수 있었다. cadR 돌연변이체는 lysine의 독성 유사체인 thiosine에 대해 내성($Ts^{r}$)을 나타냈으며, E. coli의 lysP 클론을 갖고 있는 pLYSP에 의해 돌연변이 형질이 보상되었다. 또한 lysine decarboxylase (CadA)의 반응산물인 cadaverine은 cadC+ 균주에서 cadA-lacZ 발현에 억제효과를 나타냈으나, cadC 돌연변이에는 억제효과가 나타나지 않았다.

  • PDF