For the elastic migation, the velocity errors between the initial velocity model and true velocity model seriously affect the migrated images. The assumption of an initial velocity model, thus, is one of the critical factor for the successful migration. In case of applying the layered earth model as an initial velocity model, the layer boundary having large velocity contrast can not be defined well with conventional traveltime calculation algolithms and we have the difficulties for expressing the characteristics of the real subsurface. Smooth Background Model (SBM) we have applied as an initial velocity model in our study is characterized to be linearly varying the velocity with the depth, which can express the velocity variation in the subsurface properly. Thus it can properly be applied to traveltime calculation algolithms such as Vidale's method. In this study, Kirchhoff operator for prestack migration was used and the absolute amplitude obtained by modeling was applied as a weighted value to consider the true amplitude for initial model. Initial velocity model for migration was determined by using stacking velocity and we applied this model to real data.
Na Young Kim;Dae Chul Jung;Jung Yun Lee;Kyung Hwa Han;Young Taik Oh
Korean Journal of Radiology
/
v.22
no.9
/
pp.1481-1489
/
2021
Objective: To construct a CT-based Fagotti scoring system by analyzing the correlations between laparoscopic findings and CT features in patients with advanced ovarian cancer. Materials and Methods: This retrospective cohort study included patients diagnosed with stage III/IV ovarian cancer who underwent diagnostic laparoscopy and debulking surgery between January 2010 and June 2018. Two radiologists independently reviewed preoperative CT scans and assessed ten CT features known as predictors of suboptimal cytoreduction. Correlation analysis between ten CT features and seven laparoscopic parameters based on the Fagotti scoring system was performed using Spearman's correlation. Variable selection and model construction were performed by logistic regression with the least absolute shrinkage and selection operator method using a predictive index value (PIV) ≥ 8 as an indicator of suboptimal cytoreduction. The final CT-based scoring system was internally validated using 5-fold cross-validation. Results: A total of 157 patients (median age, 56 years; range, 27-79 years) were evaluated. Among 120 (76.4%) patients with a PIV ≥ 8, 105 patients received neoadjuvant chemotherapy followed by interval debulking surgery, and the optimal cytoreduction rate was 90.5% (95 of 105). Among 37 (23.6%) patients with PIV < 8, 29 patients underwent primary debulking surgery, and the optimal cytoreduction rate was 93.1% (27 of 29). CT features showing significant correlations with PIV ≥ 8 were mesenteric involvement, gastro-transverse mesocolon-splenic space involvement, diaphragmatic involvement, and para-aortic lymphadenopathy. The area under the receiver operating curve of the final model for prediction of PIV ≥ 8 was 0.72 (95% confidence interval: 0.62-0.82). Conclusion: Central tumor burden and upper abdominal spread features on preoperative CT were identified as distinct predictive factors for high PIV on diagnostic laparoscopy. The CT-based PIV prediction model might be useful for patient stratification before cytoreduction surgery for advanced ovarian cancer.
Our objective was to investigate radiomics signatures and prediction models defined by four segmentation methods in using 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging of lung metastases of soft-tissue sarcomas (STSs). For this purpose, three fixed threshold methods using the standardized uptake value (SUV) and gradient-based edge detection (ED) were used for tumor delineation on the PET images of STSs. The Dice coefficients (DCs) of the segmentation methods were compared. The least absolute shrinkage and selection operator (LASSO) regression and Spearman's rank, and Friedman's ANOVA test were used for selection and validation of radiomics features. The developed radiomics models were assessed using ROC (receiver operating characteristics) curve and confusion matrices. According to the results, the DC values showed the biggest difference between SUV40% and other segmentation methods (DC: 0.55 and 0.59). Grey-level run-length matrix_run-length nonuniformity (GLRLM_RLNU) was a common radiomics signature extracted by all segmentation methods. The multivariable logistic regression of ED showed the highest area under the ROC (receiver operating characteristic) curve (AUC), sensitivity, specificity, and accuracy (AUC: 0.88, sensitivity: 0.85, specificity: 0.74, accuracy: 0.81). In our research, the ED method was able to derive a significant model of radiomics. GLRLM_RLNU which was selected from all segmented methods as a meaningful feature was considered the obvious radiomics feature associated with the heterogeneity and the aggressiveness. Our results have apparently showed that radiomics signatures have the potential to uncover tumor characteristics.
Background: Surgical resection is the standard treatment for early-stage lung cancer. Since postoperative lung function is related to mortality, predicted postoperative lung function is used to determine the treatment modality. The aim of this study was to evaluate the predictive performance of linear regression and machine learning models. Methods: We extracted data from the Clinical Data Warehouse and developed three sets: set I, the linear regression model; set II, machine learning models omitting the missing data: and set III, machine learning models imputing the missing data. Six machine learning models, the least absolute shrinkage and selection operator (LASSO), Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM) were implemented. The forced expiratory volume in 1 second measured 6 months after surgery was defined as the outcome. Five-fold cross-validation was performed for hyperparameter tuning of the machine learning models. The dataset was split into training and test datasets at a 70:30 ratio. Implementation was done after dataset splitting in set III. Predictive performance was evaluated by R2 and mean squared error (MSE) in the three sets. Results: A total of 1,487 patients were included in sets I and III and 896 patients were included in set II. In set I, the R2 value was 0.27 and in set II, LightGBM was the best model with the highest R2 value of 0.5 and the lowest MSE of 154.95. In set III, LightGBM was the best model with the highest R2 value of 0.56 and the lowest MSE of 174.07. Conclusion: The LightGBM model showed the best performance in predicting postoperative lung function.
Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.
Nam gyu Kang;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
Korean Journal of Radiology
/
v.22
no.3
/
pp.334-343
/
2021
Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms. Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC volume and score. Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869-0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815-0.948] and 0.899 [95% CI, 0.820-0.951], respectively), eight and three of the nine radiomics prediction models showed higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all). Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.
Objective: This study aimed to develop and validate models using radiomics features on a native T1 map from cardiac magnetic resonance (CMR) to predict left ventricular reverse remodeling (LVRR) in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Data from 274 patients with NIDCM who underwent CMR imaging with T1 mapping at Severance Hospital between April 2012 and December 2018 were retrospectively reviewed. Radiomic features were extracted from the native T1 maps. LVRR was determined using echocardiography performed ≥ 180 days after the CMR. The radiomics score was generated using the least absolute shrinkage and selection operator logistic regression models. Clinical, clinical + late gadolinium enhancement (LGE), clinical + radiomics, and clinical + LGE + radiomics models were built using a logistic regression method to predict LVRR. For internal validation of the result, bootstrap validation with 1000 resampling iterations was performed, and the optimism-corrected area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) was computed. Model performance was compared using AUC with the DeLong test and bootstrap. Results: Among 274 patients, 123 (44.9%) were classified as LVRR-positive and 151 (55.1%) as LVRR-negative. The optimism-corrected AUC of the radiomics model in internal validation with bootstrapping was 0.753 (95% CI, 0.698-0.813). The clinical + radiomics model revealed a higher optimism-corrected AUC than that of the clinical + LGE model (0.794 vs. 0.716; difference, 0.078 [99% CI, 0.003-0.151]). The clinical + LGE + radiomics model significantly improved the prediction of LVRR compared with the clinical + LGE model (optimism-corrected AUC of 0.811 vs. 0.716; difference, 0.095 [99% CI, 0.022-0.139]). Conclusion: The radiomic characteristics extracted from a non-enhanced T1 map may improve the prediction of LVRR and offer added value over traditional LGE in patients with NIDCM. Additional external validation research is required.
Objective: To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI). Materials and Methods: We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the oneweek CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under the curve (AUC). Results: Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score (RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00-1.07); P = 0.031) and RAD score (OR: 3.43 (2.34-5.28); P < 0.001) were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 (0.75-0.89) in the training set and 0.75 (0.62-0.89) in the testing set. Combining the RAD score with infarct size yielded favorable performance in predicting LVAR, with an AUC of 0.84 (0.72-0.95). Moreover, the addition of the RAD score to the left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52-0.84) to 0.82 (0.70-0.93) (P = 0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and LVEF with an AUC of 0.79 (0.65-0.94) (P = 0.727). Conclusion: Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally to LVEF and may provide an alternative to traditional CMR parameters.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.23
no.2
/
pp.132-141
/
2024
In this study, the differences in user satisfaction and the variables influencing the satisfaction with demand response transport (DRT) by travel purpose were compared. The purpose of DRT travel was divided into commuting/school and shopping/leisure travel. A survey conducted on 'Shucle' users in Sejong City was used for the analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis was applied to minimize the overfitting problems of the multilinear model. The results of the analysis confirmed the possibility that the introduction of the DRT service could eliminate the blind spot in the existing public transportation, reduce the use of private cars, encourage low-carbon and public transportation revitalization policies, and provide optimal transportation services to people who exhibit intermittent travel behaviors (e.g., elderly people, housewives, etc.). In addition, factors such as the waiting time after calling a DRT, travel time after boarding the DRT, convenience of using the DRT app, punctuality of expected departure/arrival time, and location of pickup and drop-off points were the common factors that positively influenced the satisfaction of users of the DRT services during their commuting/school and shopping/leisure travel. Meanwhile, the method of transfer to other transport modes was found to affect satisfaction only in the case of commuting/school travel, but not in the case of shopping/leisure travel. To activate the DRT service, it is necessary to consider the five influencing factors analyzed above. In addition, the differentiating factors between commuting/school and shopping/leisure travel were also identified. In the case of commuting/school travel, people value time and consider it to be important, so it is necessary to promote the convenience of transfer to other transport modes to reduce the total travel time. Regarding shopping/leisure travel, it is necessary to consider ways to create a facility that allows users to easily and conveniently designate the location of the pickup and drop-off point.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.