• Title/Summary/Keyword: operation cost

Search Result 3,764, Processing Time 0.038 seconds

Optimal Configuration Algorithm for ESS with Renewable Energy Resources Considering Peak-shaving Effects (신재생 에너지가 도입된 전력저장장치의 첨두부하절감 효과를 고려한 최적 구성 알고리즘)

  • Lee, Na-Eun;Kim, Wook-Won;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1199-1205
    • /
    • 2014
  • A power system configuration has been increasingly advanced with a number of generating units. In particular, renewable energy resources are widely introduced due to the environmental issues. When applying the renewable energy sources with the ESS (Energy Storage System), the ESS is the role of a potential generating resource in the power system while mitigating the output volatility of renewable energy resources. Thus, for applications of the ESS, the surrounding environment of it should be considered, which means that capacity and energy of the ESS can be affected. Moreover, operation strategy of the ESS should be proposed according to the installation purpose as well as the surrounding environment. In the paper, operation strategy of the ESS is proposed considering load demand and the output of renewable energy resources on a hourly basis. Then, the cost of electrical energy is minimized based on the economic model that consists of capital cost, operation cost, fuel cost, and grid cost for a year. It is sure that peak-shaving effects can be achieved while satisfying the minimum cost of electrical energy.

A Study on Calculation of Recycling Standard Cost for Efficient Operation of EPR (효율적인 EPR 운영을 위한 재활용 기준비용 산정에 관한 연구)

  • Lee, Hee-Nahm;Choi, Yoon-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2011
  • The provisions regarding the standard cost for recycling stated under the Extended Producer Responsibility (EPR) since 2002, include different and complicated obligatory steps to be taken on a variety of subject items regarding the collection, the transportation and the treatment, making the corporations face in their calculating and executing the standard cost. This study presents more objective calculation scope and standard for the purpose of efficient operation of the standard cost for recycling, in consideration of the general industry perception toward cost issue as well as domestic/overseas case studies regarding the standard cost for recycling. Besides, the study presents the checking items and the calculation contents per step to calculate the standard cost for recycling. Therefore, it is expected not only to be used as the objective standard to calculate the standard cost for recycling, but also to contribute to increasing the work efficiency in the following ongoing re-calculation process and to maintaining the consistent operation of the institution.

Economic Evaluation of Integrated Operation & Management through Operation Performance Analysis of Sewage Facilities (하수도시설 통합운영 성과분석을 통한 통합운영관리의 경제성 평가)

  • Shin, Jungsub;Chung, Seokhyun;Cho, Byoungog;Lee, Kwanhyung;Kang, Seonhong;Kim, Yongdae;Yoon, Joonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • For economic evaluation of integrated operation to sewage facilities, benefit-cost analysis was performed to watershed sewage works project in 7 watershed areas, 156 facilities. In this study, the cost before and after integrated operation was compared and benefits are calculated from the reduction of operators, increasement treated pollution loads, reduction cost through operation convenience, reduction water consumption through effluent reuse, and improvement of life benefit. The result showed that cost was 8,500million won and benefit was 16,747million won, so benefit was 49% higher than cost. B/C analysis result showed that B/C ratio was 1.97 and it is similar to other researches. The benefits of integrated operation included convenience of data management, increase of emergency response, decrease of complains with sewage which was not reflected numerically, so the benefits of integrated operation were expected much greater than this result

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.

A Study on the cost allocation method of the operating room in the hospital (수술실의 원가배부기준 설정연구)

  • Kim, Hwi-Jung;Jung, Key-Sun;Choi, Sung-Woo
    • Korea Journal of Hospital Management
    • /
    • v.8 no.1
    • /
    • pp.135-164
    • /
    • 2003
  • The operating room is the major facility that costs the highest investment per unit area in a hospital. It requires commitment of hospital resources such as manpower, equipments and material. The quantity of these resources committed actually differs from one type of operation to another. Because of this, it is not an easy task to allocate the operating cost to individual clinical departments that share the operating room. A practical way to do so may be to collect and add the operating costs incurred by each clinical department and charge the net cost to the account of the corresponding clinical department. It has been customary to allocate the cost of the operating room to the account of each individual department on the basis of the ratio of the number of operations of the department or the total revenue by each operating room. In an attempt to set up more rational cost allocation method than the customary method, this study proposes a new cost allocation method that calls for itemizing the operation cost into its constituent expenses in detail and adding them up for the operating cost incurred by each individual department. For comparison of the new method with the conventional method, the operating room in the main building of hospital A near Seoul is chosen as a study object. It is selected because it is the biggest operating room in hospital A and most of operations in this hospital are conducted in this room. For this study the one-month operation record performed in January 2001 in this operating room is analyzed to allocate the per-month operation cost to six clinical departments that used this operating room; the departments of general surgery, orthopedic surgery, neuro-surgery, dental surgery, urology, and obstetrics & gynecology. In the new method(or method 1), each operation cost is categorized into three major expenses; personnel expense, material expense, and overhead expense and is allocated into the account of the clinical department that used the operating room. The method 1 shows that, among the total one-month operating cost of 814,054 thousand wons in this hospital, 163,714 thousand won is allocated to GS, 335,084 thousand won to as, 202,772 thousand won to NS, 42,265 thousand won to uno, 33,423 thousand won to OB/GY, and 36.796 thousand won to DS. The allocation of the operating cost to six departments by the new method is quite different from that by the conventional method. According to one conventional allocation method based on the ratio of the number of operations of a department to the total number of operations in the operating room(method 2 hereafter), 329,692 thousand won are allocated to GS, 262,125 thousand won to as, 87,104 thousand won to NS, 59,426 thousand won to URO, 51.285 thousand won to OB/GY, and 24,422 thousand won to DS. According to the other conventional allocation method based on the ratio of the revenue of a department(method 3 hereafter), 148,158 thousand won are allocated to GS, 272,708 thousand won to as, 268.638 thousand won to NS, 45,587 thousand won to uno, 51.285 thousand won to OB/GY, and 27.678 thousand won to DS. As can be noted from these results, the cost allocation to six departments by method 1 is strikingly different from those by method 2 and method 3. The operating cost allocated to GS by method 2 is about twice by method 1. Method 3 makes allocations of the operating cost to individual departments very similarly as method 1. However, there are still discrepancies between the two methods. In particular the cost allocations to OB/GY by the two methods have roughly 53.4% discrepancy. The conventional methods 2 and 3 fail to take into account properly the fact that the average time spent for the operation is different and dependent on the clinical department, whether or not to use expensive clinical material dictate the operating cost, and there is difference between the official operating cost and the actual operating cost. This is why the conventional methods turn out to be inappropriate as the operating cost allocation methods. In conclusion, the new method here may be laborious and cause a complexity in bookkeeping because it requires detailed bookkeeping of the operation cost by its constituent expenses and also by individual clinical department, treating each department as an independent accounting unit. But the method is worth adopting because it will allow the concerned hospital to estimate the operating cost as accurately as practicable. The cost data used in this study such as personnel expense, material cost, overhead cost may not be correct ones. Therefore, the operating cost estimated in the main text may not be the same as the actual cost. Also, the study is focused on the case of only hospital A, which is hardly claimed to represent the hospitals across the nation. In spite of these deficiencies, this study is noteworthy from the standpoint that it proposes a practical allocation method of the operating cost to each individual clinical department.

  • PDF

The Study on the Cost Analysis Based on ABC System in Clinical Laboratory (활동기준원가시스템을 이용한 임상병리과 검사 서비스 원가 분석)

  • 전기홍;김보경;안태식;조우현
    • Health Policy and Management
    • /
    • v.8 no.2
    • /
    • pp.88-109
    • /
    • 1998
  • The main purpose of this study is to compare the traditional cost system and ABC(Activity Based Cost) system of clinical laboratory department in a hospital. The study subject was 296 services in clinical laboratory from March, 1997 to August, 1997. In a new costing system, cost for a lab test consist of direct cost element, activity based cost element, and allocated common cost element. In a traditional cost system, cost elements included direct cost element and indirect cost allocated based on test volumes The major findings of this research were as follows. 1. In the application of ABC system, total cost was analyzed as follows. Direct cost was 39.3% of total cost. Activity cost and allocation were 20.9% and 39.8%, respectively. The results of analysis to use traditional cost system were as follows. Direct cost was 39.3% and it was as same as the result of direct cost of ABC system. Indirect cost was 60.7%. 2. Activities of clinical laboratory of subject hospital were registration, pre-test operation, test, test result handling, delivery, culture, post-test operation, technical support, management support, and educational support. 3. The differences of the case of higher number of test case being carried out, the cost of ABC system was lower than the cost of traditional cost system. Otherwise in the case of lower number of test case being carried out, the rests have not been appropriately evaluated, and effective management were needed in clinical laboratory.

  • PDF

An Analysis of the Operational Productivity and Cost for the Utilization of Forest-biomass(II) - the Analysis of Operational Cost - (산림바이오매스 이용을 위한 산림작업 공정 및 비용 분석(II) - 작업비용 분석 -)

  • Mun, Ho-Seong;Cho, Koo-Hyun;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.230-238
    • /
    • 2015
  • This study was analyzed the operational cost of logging and chipping operations in order to develop the efficient logging operation system for the utilization of forest-biomass. Analysis of the operational cost of logging operation systems, the operation system D which include chain saw, tower-yarder, mini-forwarder and truck was calculated the lowest cost to be $68,498Won/m^3$. In the utilization of forest-biomass, the operation system E which include chipping by mini-chipper at the site, forwarding of chips by mini-forwarder, transportation of chips by truck was estimated to be 90,770 Won/Ton. Thus, These results are determined as an effective operating system for logging operation and the utilization of forest-biomass.

The optimal operation condition of heat engine (熱機關의 最適 運轉條件)

  • 정평석;김수연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.971-974
    • /
    • 1987
  • Considering heat transfer and heat loss processes for the heat engine operating between two fixed heat reservoirs, it may be qualitatively explained that the maxima of power output and its efficiency depending upon operating conditions are extreme maxima. Furthermore, it is also found that from an economic point of view the above two extremes are related to extreme minima of plant cost per unit power output and operation cost per unit power output respectively, and the condition of minimum cost per unit power output exists between the extreme minimum conditions of plant cost per unit power output and that of operation cost per unit power output.

The Functions and Roles of Bimodal Tram in the Public Transportation System (대중교통체계에서 바이모달 트램의 기능과 역할)

  • Yoon, Hee-Taek;Park, Young-Kon;Chang, Seky-Mok;Mok, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2463-2466
    • /
    • 2008
  • The public transportation in operation or to be planned domestically includes subway, LRT, bimodal tram and bus, which are independently characterized in their passenger capacity and cost. High quality service is generally accompanied by high cost of construction and operation. Thus, ITS, BIS/BMS and BRT system are recently introduced to provide high quality service to the passengers with the cost as low as possible. The bimodal tram is under development to achieve such goals in public transportation. The passenger capacity is approximately expected to be 10,000$\sim$17,000 persons/hour and the construction cost to be 10$\sim$30 million dollars/km. It is possible to construct the infrastructure gradually depending on the demand of transportation in the planned route, which can effectively reduce the initial cost to launch the service. The bimodal tram is developed to provide the advantages of subway and bus to the passengers with respect to the scheduled operation and flexibility of the lines.

  • PDF

A Preventive Replacement Model for Standby Systems (대기구조를 갖는 시스템의 예방 교체 모형)

  • Lee, Hyo-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.555-570
    • /
    • 1995
  • We consider a preventive replacement policy for a cold-standby system with N components, in which only one component is in operation at a time. If the component in operation fails, a standby component is immediately switched into operation. If all components fail, the system fails. The system is inspected at random poins in time to determine whether it is to be replaced or not. If the number of failed components at the time of inspection exceeds a threshold value r, the system is replaced. Otherwise the decision is put off until the next inspection point arrives. Under the cost structure which includes a replacement cost, a system down-time cost and a holding cost of the components, we develop an efficient procedure to find the optimal control values N and r, which minimize the expected cost per unit time.

  • PDF