• Title/Summary/Keyword: operating temperature

Search Result 3,662, Processing Time 0.031 seconds

Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank (추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰)

  • Cho Namkyung;Jeong Yonggahp;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.25-37
    • /
    • 2005
  • For pump-fed rocket propulsion system, the temperature of LOX to be supplied to turbopump inlet should be satisfied with pump inlet temperature requirement during all operating stages, as excessive temperatures can result in cavitation due to reduction in NPSH, thus either damaging the pump or adversely affecting pump performance rise. So exact estimation of LOX temperature rise is absolutely needed for developing reliable propulsion system. This paper presents systematic analysis scheme for estimating inner process of cryogenic propellant tank which is needed for LOX temperature rise. And this paper presents LOX temperature rise and thermal stratification for all rocket operating stages including cooling, filling, waiting, pre-pressurization and firing, with the application of buoyancy driven boundary layer theory.

An Experimental Study on the Performance of PEMFC Stack Depending on Operating Conditions (운전조건에 따른 PEMFC 스택의 성능에 관한 실험적 연구)

  • Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Nam, Il-Sang;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.770-777
    • /
    • 2009
  • The energy depletion and the environmental pollution like global warming are worldwide issues. For correcting these problems there are many studies on new-renewable energy in Korea. A kind of new-renewable energy, PEMFC(Proton Exchange Membrane Fuel Cell) is a low temperature fuell cell and there are some cases of small craft or submarine adopted PEMFC system in maritime. PEMFC's performance is affected the operating conditions. Finding optimum operating conditions must be performed before adopting PEMFC to system. So in this study, we experiment about various operating conditions to apply 150W PEMFC stack for a model boat. And through the results, we find optimum operating conditions and study an effect of operating conditions to PEMFC.

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

An Experimental Study on the Temperature-Control Performance of a Variable Conductance Heat Pipe (가변열전도성능 히트파이프(VCHP)의 온도제어 성능에 관한 실험)

  • Boo, Joon-Hong;Park, Cheol-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2124-2129
    • /
    • 2007
  • A VCHP was fabricated and tested for its thermal performance. The container was made of copper, and the working fluid was water. STS-316 screen of mesh number 100 was inserted as a capillary structure. As a baseline performance, a normal heat pipe of the same dimensions was tested in advance to compare with VCHP, where an inert gas container was attached. The outer diameter of the heat pipe was 12.8 mm and the total length was 600 mm. The evaporator and the condenser lengths were both 200 mm. The thermal load ranged from 20 to 300W. Typical result revealed that the operating temperature of the VCHP stayed almost constant, while that of the normal heat pipe varied as much as 40$^{\circ}C$. Therefore, it was demonstrated that the VCHP is very effective for temperature control of heat-dissipating devices.

  • PDF

A Study on Performance of PEMFC with Variations on Stack Temperature and Mass Flow Rate (스택온도 및 유량변화에 따른 PEMFC의 출력특성 연구)

  • Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.140-140
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are $20{\sim}70^{\circ}C$ on stack temperature and 1~8L/min on $H_2$ volume.

  • PDF

A Study On the Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang-Doo;Kim, Yi-Gon;Lee, Bong-Kuk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.350-353
    • /
    • 2003
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experiment81 results of the simulation.

  • PDF

Performance Analysis of Two-stage Compression and Two-stage Expansion Refrigeration System using Freon Refrigerants (친환경 프레온 냉매를 이용하는 단압축 단팽창 냉동시스템의 성능예측)

  • Roh, Geun-Sang;Kim, Jong-Ryeol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.2
    • /
    • pp.301-306
    • /
    • 2013
  • In this paper, cycle performance analysis of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants is presented to offer the basic design data for the operating parameters of the system. Alternative freon refrigerant for freon refrigerant R22 were used as working fluids in this study. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, and mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of two-stage compression and two-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ratio of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants have an effect on COP of this system.

Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack (고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구)

  • Choi, Byung Wook;Ju, Hyun Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.

Er-doped Superfluorescent Fiber Source with Thermally Stable Mean Wavelength

  • Park, Hee-Gap;Yun, Seung-Chul;Jin, Young-Jun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.240-244
    • /
    • 2009
  • An Er-doped superfluorescent fiber source is designed and constructed with the double-pass forward configuration, which aims at high stability of its mean wavelength against temperature variation. As a result, thermal stability of mean wavelength better than 1 ppm is obtained against the temperature variation of ${\pm}5^{\circ}C$ around the optimum operating temperature. The optimum operating temperature can be tuned with the Er-doped fiber length and the pump power.

Numerical Prediction of Aviation Fuel Temperatures in Unmanned Air Vehicles

  • Baek, Nak-Gon;Lim, Jin-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • This paper performs numerical prediction of fuel temperature in the fuel tanks of unmanned air vehicles for both ground static non-operating and in flight transient conditions. The calculation is carried out using a modified Dufort-Frankel scheme. For this calculation, it is assumed that a non-operating vehicle on the ground is subjected to repeating daily cycles of ambient temperature with solar radiation and wind under 1%, with a 20% probability of hot day conditions. The energy conservation equation is used as the governing equation to calculate heat transfer between the fuel tank surface and the ambient environment. Results of the present analysis may be used as the estimated initial values of fuel temperatures in a vehicle's fuel tank for the purpose of analyzing transient fuel temperatures during various flight missions. This research also demonstrates that the fuel temperature of the front tank is higher than that of the rear tank, and that the difference between the two temperatures increases in the later phases of flight due to the consumption of fuel.