• Title/Summary/Keyword: operating frequency

Search Result 2,845, Processing Time 0.027 seconds

Study on the optimum system operation by considering the spinning reserve power (순동예비력을 고려한 계통의 최적운용방식에 관한 연구)

  • 송길영
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.97-102
    • /
    • 1975
  • This paper describes the result of a Study for the Optimum Operating method with Spinning reserve in case of outage of large generator unit to improve the system stability and prevent the system frequency drop. This is usually done by governor free operation, so we focused our attention to the operating Char acteristics of spinning reserve. Nexy, a study was made to mesure the upper limit of Spinning reserve and when this upper limit cannot match the required power, a relationship between the amount of spinning reserve and that of the load shedding requirement was searched with regard to several system operating conditions to use it in our future system operation. By this study, the optimum system operating method was recommended for reliable operation of power system.

  • PDF

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유 진동수에 관한 연구)

  • Lee, Jung-Tak;Son, Choong-Yul;Lee, Kang-Su;Won, Jong-Bum;Kim, Sang-Ho;Kim, Tae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.434-438
    • /
    • 2006
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of Wind Turbine Jacket Type Tower model, and calculated that the stress values of Thrust Load, Wave Load, Wind Load, Current Loda, Gravity Load, etc., environment evaluation analysis during static Operating Wind Turbine Jacket Type Tower model, carried out of Natural Frequency analysis of total load case to stress matrix, Frequency calculated that calculated Add Natural Frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

Application of the Correlation Technique to Electromagnetic Ultrasonic Nondestructive Evaluation: Theoretical Study and Computer Simulation

  • Zhao, Xin;Wang, Jin-Peng;Tao, Xue-Heng
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1628-1635
    • /
    • 2006
  • A new frequency-modulated m-sequence correlation technique was described. It has. been seen that the frequency modulation scheme leads to higher signal-to-noise ratio than direct sequencing and less hardware effort than PSK modulation scheme. The operating frequency of the correlation system was deduced. The optimal frequency for the frequency-modulated m-sequence correlation system should be 1.35 times of the center frequency of the transducer. The application of this correlation technique to electromagnetic ultrasonic system was computer-simulated.

  • PDF

The Analysis of a Series Resonant Converter with Frequency Control (주파수 제어에 의한 직렬 공진형 컨버터의 특성 해석)

  • 이윤종;김철진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.557-567
    • /
    • 1990
  • This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter with frequency control. The natural commutation of all switch element is realized when the switching frequency is below the resonant frequency of the tank circuit, and the analysis is limited to only this region. For the analysis method, state plane technique is adopted, and each operation mode is defined from normalized switching frequency Fsn. Under this condition, circuit performance is analyzed ideally. The physical characteristics of the series resonant converter is easily grasped by this analysis method with frequency control and this analytical results are directly applicable to the actual converter design. The validity of the analysis is verified by comparing with experimental results and the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis.

  • PDF

A Design of Frequency Synthesizer using Programmable Frequency Divider with Novel Architecture (새로운 구조의 주파수 분주기를 이용한 주파수 합성기 설계)

  • 김태엽;경영자;이광희;손상희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.208-211
    • /
    • 2000
  • This paper describes the design of a CMOS frequency synthesizer using programmable frequency divider with novel architecture. A novel architecture of programmable divider can be producted all of integer-N and fabricated by 0.65$\mu\textrm{m}$ 2-poly, 2-metal CMOS technology. Frequency synthesizer is simulated by 0.25$\mu\textrm{m}$ 2-poly, 5-metal CMOS technology. This circuit has settling time of 1.5${\mu}\textrm{s}$ and power consumption of 70㎽. Operating frequency of the frequency synthesizer is 820MHz∼l㎓ with a 2.5V supply voltage.

  • PDF

Output power maximizing in ultrasonic transducer driven at 1MHz utilizing auto-tune MOS-FET RF inverter

  • Mizutani, Yoko;Suzuki, Taiju;Ikeda Hiroaki;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.87-90
    • /
    • 1995
  • When the ultrasonic transducer operating at l MHz for use in cleaning semiconductor wafers or other industsrial materials is driven from the MOS-FET DC-to RF inverter, the output power severely depends on the frequency of operation since the quality factor of the transducer is high. In order to tune to the eresonating frequency of the ultrasonic transducer, the drive signal frequency of the MOS-FET power inverter is automatically scananed until the frequency is set at the resonating frequency of the ultrasonic transducer is maximized. The control circuit consists of an output power sensing circuit, a PLL controller, a frequency standard, and other peripheral circuits. The operation was satisfactory when the transducer having an output of 600 W at 1 MHz was used.

  • PDF

Acoustic resonance by length of acoustic baffle at Finned Tube bank (핀-튜브군에서 배플 길이에 따른 음향공진)

  • 방경보;류제욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.98-103
    • /
    • 2003
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.

  • PDF

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유진동수에 관한 연구)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

  • Kim, Sun-Ryoul;Ryu, Hyuk;Ha, Keum-Won;Kim, Jeong-Geun;Baek, Donghyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.771-776
    • /
    • 2014
  • In this paper, an agile programmable chirp spread spectrum generator for wideband frequency-jamming applications from 20 MHz to 3 GHz is proposed. A frequency-mixing architecture using two voltage-controlled oscillators is used to achieve a wideband operating frequency range, and the direct digital synthesizer (DDS)-based chirping method with a two-point modulation technique is employed to provide a programmable and consistent chirp bandwidth. The proposed signal generator provides the various programmable FM signals from 20 MHz to 3 GHz with a modulation bandwidth from 0 to 400 MHz. The prototype successfully demonstrates arbitrary sequential jamming operation with a fast band-to-band hopping time of < 10 ${\mu}sec$.

The Design of 1.2V $3^{rd}$ Order 4bit Sigma Delta Modulator with Improved Operating Time of High Speed DWA (고속 DWA의 동작시간을 개선한 1.2V $3^{rd}$ 4bit 시그마 델타 변조기 설계)

  • Yi, Soon-Jai;Kim, Sun-Hong;Cho, Sung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • This paper presents the $3^{rd}$ 4bit sigma delta modulator with the block and timing diagrams of DWA(Data Weighted Averaging) to optimize a operating time. In the modulator, the proposed DWA structure has a stable operation and timing margin so as to remove three latches and another clock. Because the modulator with proposed DWA structure improve timing margin about 23%. It can increase sampling frequency up to 244MHz. Through the MATLAB modeling, the optimized coefficients are obtained to design the modulator. The fully differential SC integrators, DAC, switch, quantizer, and DWA are designed by considering the nonideal characteristics. The designed $3^{rd}$ order 4bit modulator has a power consumption of 40mW and SNR(signal to noise ratio) of 77.2dB under 1.2V supply and 64MHz sampling frequency.