• Title/Summary/Keyword: open cup tester

Search Result 47, Processing Time 0.019 seconds

The Prediction and Measurement of Combustible Properties for Bromobenzene (브로모벤젠의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.21-25
    • /
    • 2015
  • The usage of the correct combustion characteristics of the treated substance for the safety of the process is critical. For the safe handling of bromobenzene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of bromobenzene was experimented. And, the lower explosion limit of bromobenzene was calculated by using the lower flash point obtained in the experiment. The flash points of bromobenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $50^{\circ}C$, respectively. The flash points of bromobenzene by using the Tag and Cleveland automatic open cup testers are measured $56^{\circ}C$ and $64^{\circ}C$. The AIT of bromobenzene by ASTM 659E tester was measured as $573^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 1.63 Vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA) (이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • For the safe handling of isobutylalcohol(IBA), this study was investigated the explosion limits of isobutylalcohol in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of isobutylalcohol recommended 1.7 Vol% and 10.9 Vol.%, respectively. The lower flash point of isobutylalcohol by using Setaflash and Penski-Martens closed-cup testers were experimented $25^{\circ}C$ and $30^{\circ}C$, respectively. The lower flash point isobutylalcohol by using Tag and Cleveland open cup testers were experimented $36^{\circ}C$ and $39^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for isobutylalcohol. The experimental AIT of isobutylalcohol was $400^{\circ}C$.

The Measurement and Prediction of the Fire and Explosion Properties of Isoamyl alcohol (이소아밀알코올의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dongmyeong
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.34-40
    • /
    • 2016
  • For the safe handling of isoamyl alcohol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of isoamyl alcohol was experimented. And, the lower explosion limit of isoamyl alcohol was calculated by using the lower flash point obtained in the experiment. The flash points of isoamyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of isoamyl alcohol by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$and $45^{\circ}C$. The AIT of isoamyl alcohol by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

A Study on the Fire Hazard of Transportation Oil (수송기관용 오일의 화재위험성에 관한 연구)

  • Park, Young Ju;Hwang, Me Jung;Lee, Hae Pyeong;Lee, Seung Chul;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.114-120
    • /
    • 2014
  • The purpose of this study is to conduct the study of the combustion and thermal characteristics through transportation oil for the analysis of fire hazard. Transportation oil breaks down into fuels such as diesel for civilian demands, gasoline, DF1(diesel for military), high sulfur diesel(for marine), kerosene and JP1(for aviation), and lubricants like brake fluid, power steering oil, engine oil, and automatic and manual transmission oil. The experiments of flash point, ignition point, flame duration time, heat release rate were carried out using TAG closed cup flash point tester(AFP761), Cleveland open cup auto flash point analyzer(AFP762), KRS-RG-9000 and Dual cone calorimeter. As a result, the fuel's ignition points were lower than lubricants, especially that of gasoline was not conducted as it has below zero one. Gasoline has the highest ignition point of about $600^{\circ}C$, while the other fuels showed $400{\sim}465^{\circ}C$. For flame duration time, lubricants had over 300 seconds, but fuels had less than 300 seconds except high sulfur diesel(350 seconds). Total heat release rate ranged $287{\sim}462kW/m^2$ for lubricants and gasoline showed the highest total heat release rate, $652kW/m^2$.

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.