• Title/Summary/Keyword: open boundary condition

Search Result 103, Processing Time 0.017 seconds

Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach (SWASH 모형을 이용한 태풍 나크리(NAKRI)에 의한 해운대 해수욕장의 쇄파대 수리특성 해석)

  • Lee, Jong-Sup;Park, Myeong-Won;Kang, Min-Ho;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2015
  • A hydraulic characteristics in the surf zone such as wave breaking points, wave set-down, wave set-up, wave-induced currents and run-up heights are studied using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Incident wave conditions is obtained from one-hourly observed wave data by KHOA and irregular wave by JONSWAP spectrum is given as an open boundary condition in the model. A Wave-induced current patterns by the SWASH model is compared with the observed currents and sediment flux patterns in that areas, the calculated maximum wave run-up heights in the model is compared with the video monitoring data, the empirical formula by Stockdon et al. and Mase. A dominant longshore currents toward the east of the beach appears due to the effect of incident wave direction and the geographical features and some rip currents occurs at the central part of the beach. The maximum wave run-up height(1.15 m) by the SWASH model shows a similar pattern with the video monitoring data(1.26 m) and the magnitude shows a similar result(1.33m) by Stockdon et al.

A Study on the Location and Spatial Composition of Pihyang-jeong Zone (피향정(披香亭) 일원의 입지 및 공간구성에 관한 연구)

  • Lee, Hyun-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.85-97
    • /
    • 2010
  • This research studied the location and the spatial composition of Pihyang-jeong zone. Pihyang-jeong is regarded as one of the five great pavilions in Chollabuk-do. Located in Taein-myeon of Jeongeup-si, Pihyang-jeong is also called as 'the number one pavilion in Honam area'. 1. There is no record regarding the first construction of Pihyang-jeong. There is only transmitting by word of mouth that the scholar Choi Chi-won had an excursion to here and composed some poetry during the age of King Heon-gang of Shilla dynasty. However, there are records that Lee Ji-gweng had expanded the humble structure in 1618, Park Sung-go repaired it in 1664 and Yoo Geun repaired it again in 1715. 2. The location of Pihyang-jeong is 'high in north and low in south' and typical 'mountain in rear and water in front'. It has Seong-hwang Mountain(189m) in the north, Hang-ga Mountain(106m) in the south, Tae Mountain(33m) in the south and an open field in the northwest. 3. The spatial composition around Pihyang-jeong is as following. Pihyang-jeong faces 'Hayeonji'(the lower side lotus pond) in the south-south-west direction. 4. The buildings around Pihyang-jeong are; Pihyang-jeong, which was the pavilion of the government official not directly in charge of government office, Hambyeok-lu in the Hayeonji and the facility for the caretaker. Pihyang-jeong is a rectangular building with double eaves and hipped-and-gabled roof. It has five rooms in the front and four rooms in the side. Hambyeok-lu had been first built in 1918 as two-storey wooden pavilion with dancheong, traditional multicolored paintwork on wooden buildings. Then it was modified into rectangular single-storey pavilion with hipped-and-gabled roof and five rooms in 1971. In 2010, it was rebuilt as a hexagonal pavilion; therefore, the present shape is completely different one from the original shape. 5. The scenic features around Pihyang-jeong are as following. There are 21 stone monuments in Pihyang-jeong zone. The fence surrounding Pihyang-jeong is a traditional Korean style crude stone fence. There are three gates in three-gates-style, each gate made with two posts and one 'matbae'(gabled) roof. Also, a stepping stone for mounting/dismounting was found in the east of Pihyang-jeong outer perimeter. 6. The water scenic feature around Pihyang-jeong is a representative case of drawing in the water from the natural pond nearby government office and building a pavilion around the water. 7. The planting around Pihyang-jeong is as following. There are Zelkova trees in the boundary perimeter. In the southern small park, there are Zelkova trees, Crape-myrtie trees, Bushy young pine trees, Pine trees, Satuki, Purple azalea and Grass field. Around Hambyeok-lu in the Ha-yeonji, Elm trees, Zelkova trees and Pine trees are growing in good condition.

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust (서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구)

  • Jinsub Park;Kiho Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.