• Title/Summary/Keyword: ontology modeling

Search Result 190, Processing Time 0.03 seconds

An Ontological Approach for Conceptual Modeling of Mission Space in Military Modeling & Simulation (국방 Modeling & Simulation에서 임무공간 개념모델링을 위한 온톨로지 적용방안)

  • Bae, Young Min;Kang, Haeran;Lee, Jonghyuk;Lee, Kyong-Ho;Lee, Young Hoon
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.3
    • /
    • pp.243-251
    • /
    • 2012
  • This paper presents the Conceptual Models of the Mission Space-Korea (CMMS-K), which is an ontology-based conceptual modeling framework of the mission space. Through modeling and simulating military trainings, we can reduce the cost of actual military trainings in terms of time, space, and supplies. CMMS-K is being developed to improve the interoperability and reusability of defense models and simulations. CMMS-K reflects the needs and characteristics of Korean military while referring to existing military conceptual modeling frameworks. The main components of CMMS-K contain domain ontologies, a mission space model description language, a mission space modeling tool, and a CMMS-K management system. CMMS-K domain ontologies consist of entity and task ontologies. In this paper, the CMMS-K domain ontologies are described in detail and the feasibility of the proposed method is discussed with a case study.

Metadata Ontology Design for B2B Business Process Registries (기업간 비즈니스 프로세스 등록저장소를 위한 메타데이터 온톨로지 설계)

  • Kim, Jong-Woo;Kim, Hyoung-Do;Yun, Jung-Hee;Jung, Hyun-Chul
    • The KIPS Transactions:PartD
    • /
    • v.14D no.4 s.114
    • /
    • pp.435-446
    • /
    • 2007
  • B2B registries are information systems to register B2B related business information such as companies' profiles, business documents, business processes, and services and to provide query facilities to find information about potential business partners. Focusing on the design of the registry for B2B business processes, in this paper, a metadata ontology is designed to register B2B business processes. In practice, there are several competitive business process definition languages such as ebXML BPSS (Business Process Specification Schema), WSBPEL (Web Service Business Process Execution Language), BPMN (Business Process Modeling Notation), and so on. In order to register heterogeneous business processes based on different representation frameworks, the proposed metadata ontology consists of three layers, common metadata, language-specific metadata, and interrelationship metadata. To show the usefulness of the proposed metadata ontology, two examples which are represented by ebXML BPSS and WSBPEL respectively are described in order to show how the proposed metadata ontology is used to registry B2B business processes. To implement the proposed metadata ontology using ebXML registry, metadata mapping scheme to ebRIM (ebXML Registry Information Model) is also suggested.

An Ontological and Rule-based Reasoning for Music Recommendation using Musical Moods (음악 무드를 이용한 온톨로지 기반 음악 추천)

  • Song, Se-Heon;Rho, Seung-Min;Hwang, Een-Jun;Kim, Min-Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.108-118
    • /
    • 2010
  • In this paper, we propose Context-based Music Recommendation (COMUS) ontology for modeling user's musical preferences and context and for supporting reasoning about the user's desired emotion and preferences. The COMUS provides an upper Music Ontology that captures concepts about the general properties of music such as title, artists and genre and also provides extensibility for adding domain-specific ontologies, such as Mood and Situation, in a hierarchical manner. The COMUS is music dedicated ontology in OWL constructed by incorporating domain specific classes for music recommendation into the Music Ontology. Using this context ontology, we believe that the use of logical reasoning by checking the consistency of context information, and reasoning over the high-level, implicit context from the low-level, explicit information. As a novelty, our ontology can express detailed and complicated relations among the music, moods and situations, enabling users to find appropriate music for the application. We present some of the experiments we performed as a case-study for music recommendation.

Ontology based Educational Systems using Discrete Probability Techniques (이산 확률 기법을 이용한 온톨로지 기반 교육 시스템)

  • Lee, Yoon-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.17-24
    • /
    • 2007
  • Critical practicality problems are cause to search the presentation and contents according to user request and purpose in previous internet system. Recently, there are a lot of researches about dynamic adaptable ontology based system. We designed ontology based educational system which uses discrete probability and user profile. This system provided advanced usability of contents by ontology and dynamic adaptive model based on discrete probability distribution function and user profile in ontology educational systems. This models represents application domain to weighted direction graph of dynamic adaptive objects and modeling user actions using dynamically approach method structured on discrete probability function. Proposed probability analysis can use that presenting potential attribute to user actions that are tracing search actions of user in ontology structure. This approach methods can allocate dynamically appropriate profiles to user.

  • PDF

A Basic Study on the Development of Autonomous Behavioral Agent based on Ontology Used in Virtual Space (가상공간에서 활용되는 온톨로지 기반 지능형 자율주행 에이전트 개발에 관한 기초 연구)

  • Lee, Yun-Gil
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.777-784
    • /
    • 2017
  • In the architectural space, the user's behavior is the most important factor in evaluating the quality of architecture. Normally, the evaluation of user behavioral performance was carried out after a building was completed. Recently, interest in and efforts at pre-simulation based on information technology are accelerating. However, since existing user simulation technology is concerned mainly with simply escaping from a large space, it is impossible to simulate the behavior of multiple users in an architectural space. The present study strives to develop a human-figured intelligent agent for advanced user simulation based on ontology. The main purpose of the study is to employ the intelligent behaviors of a NPC(Non-player Character) to infer the ontology of both spatial and user information. In this paper, we intend to integrate ontology inference technology into the virtual space. And also, this study suggest the ontology visualization technology which illustrate the ontology-based information and their change in the spatial information.

REST-Based Open API Ontology Modeling and Automatic Mash-Up Method Using In/Output Properties (입출력 파라미터 특성을 이용한 REST 기반의 Open API 온톨로지 모델링 및 자동 매쉬업 방법)

  • Jung, Wan;Kim, Hwa Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.626-636
    • /
    • 2014
  • Existing mash-up services could not be offered in accordance with the purposes and preferences of all users because they are created by the service developers. Therefore some precedent studies, which enable for individual users to create their own mash-up services automatically, have been conducted. In order to create automatic mash-up services, it is important to find elements to distinguish the possibility of mash-up. The precedent studies determine the possibility of mash-up through comparison of the similarity between input/output parameter names in the REST-based Open API. Only using the similarity to distinguish the possibility of mash-up, however, some unintended mash-up results can be occurred because the property of input/output parameters are not considered. In this paper, we propose the method considering the properties of input/output parameters to decrease the unintended mash-up results and extend ontology proposed in precedent studies by applying this property. And we propose the algorithm to distinguish the possibility of mash-up using the expanded ontology and describe the result of automatic mash-up services.

An Ontology-based Cloud Storage for Reusing Weapon Models (무기체계 모델 재사용을 위한 온톨로지 기반 클라우드 저장소 연구)

  • Kim, Tae-Sup;Park, Chan-Jong;Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • Defense Modeling and Simulation aims to provide a computerized war environment where we can analyze weapon systems realistically. As we invest significant efforts to represent weapon systems and their operational environments on the computer, there has been an increasing need to reuse predefined weapon models. In this paper, we introduce OB-Cloud (Ontology-Based Cloud storage) to utilize predefined weapon models. OB-Cloud has been implemented as a repository for OpenSIM (Open Simulation engine for Interoperable Models), which is an integrated simulation environment for aiding weapons effectiveness analysis, under the development of our research team. OB-Cloud uses weapon ontology and thesaurus dictionaries to provide semantic search for reusable models. In this paper, we present repository services of OB-Cloud, including registration of weapon models and semantic retrieval of similar models, and illustrate how we can improve reusability of weapon models, through an example.

Ubiquitous Operation Composition based on Task (태스크 기반의 유비쿼터스 오퍼레이션 조합)

  • Hwang, Yun-Young;Lee, Kyu-Chul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2010
  • In this paper, we will introduce our approach for composing operation based on user tasks. It is based on Service Component Architecture (SCA). In addition, we developed ontology based on OWL and the MIT process handbook, called u-TO(universal task ontology), which can be used for users describing and specifying semantically their needs. We represent the hierarchy of tasks, and classify tasks according to views in u-TO. It aims at facilitating the modeling of complex demands or systems without regarding details of technical aspects of underlying infrastructure.

Ontology-based Facility Maintenance Information Integration Model using IFC-based BIM data

  • Kim, Karam;Yu, Jungho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.280-283
    • /
    • 2015
  • Many construction projects have used the building information modeling (BIM) extensively considering data interoperability throughout the projects' lifecycles. However, the current approach, which is to collect the data required to support facility maintenance system (FMS) has a significant shortcoming in that there are various individual pieces of information to represent the performance of the facility and the condition of each of the elements of the facility. Since a heterogeneous external database could be used to manage a construction project, all of the conditions related to the building cannot be included in an integrated BIM-based building model for data exchange. In this paper, we proposed an ontology-based facility maintenance information model to integrate multiple, related pieces of information on the construction project using industry foundation classesbased (IFC-based) BIM data. The proposed process will enable the engineers who are responsible for facility management to use a BIM-based model directly in the FMS-based work process without having to do additional data input. The proposed process can help ensure that the management of FMS information is more accurate and reliable.

  • PDF

Modeling in System Engineering: Conceptual Time Representation

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.153-164
    • /
    • 2021
  • The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.