Browse > Article
http://dx.doi.org/10.22937/IJCSNS.2021.21.3.21

Modeling in System Engineering: Conceptual Time Representation  

Al-Fedaghi, Sabah (Computer Engineering Department, Kuwait University)
Publication Information
International Journal of Computer Science & Network Security / v.21, no.3, 2021 , pp. 153-164 More about this Journal
Abstract
The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.
Keywords
Conceptual modeling; time representation; software engineering; systems engineering; static model; dynamic model; behavioral model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smyrk, J.R.: The ITO Model: A Framework for Developing and Classifying Performance Indicators. In: Australasian Evaluation Society, International Conference, Sydney, Australia (1995)
2 Ingram, D., Tallant, J.: Presentism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2018). https://plato.stanford.edu/archives/spr2018/entries/presentism/
3 Mitsch, S., Platzer, A., Retschitzegger, W., Schwinger, W.: Logic-Based Modeling Approaches for Qualitative and Hybrid Reasoning in Dynamic Spatial Systems. ACM Computing Surveys 48(1), article 3 (2015). https://doi.org/10.1145/2764901   DOI
4 Al-Fedaghi, S.: Diagrammatic Formalism for Complex Systems: More than One Way to Eventize a Railcar System. International Journal of Computer Science and Network Security (IJCSNS) 21(2), 130-141 (2021). DOI: 10.22937/IJCSNS.2021.21.2.15   DOI
5 Lakoff, G., & Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)
6 Al-Fedaghi, S.: Advancing Behavior Engineering: Toward Integrated Events Modeling. International Journal of Computer Science and Network Security (IJCSNS) 20(12), 95-107 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.10   DOI
7 Currie, A.: Science & Speculation. Erkenn (Preprint) 1-23 (2021). https://doi.org/10.1007/s10670-020-00370-w
8 Crang, M.: Rhythms of the City: Temporalised Space and Motion. In: Timespace: Geographies of Temporality, pp. 187-207. Routledge, London (2001)
9 Al-Fedaghi, S.: Conceptual Temporal Modeling Applied to Databases. International Journal of Advanced Computer Science and Applications (IJACSA) 12(1), xx-yy (2021). DOI: 10.14569/IJACSA.2021.0120161   DOI
10 Al-Fedaghi, S., Al-Fadhli, J.: Thinging-Oriented Modeling of Unmanned Aerial Vehicles. International Journal of Advanced Computer Science and Applications (IJACSA) 11(5), 610-619 (2020). DOI 10.14569/IJACSA.2020.0110575   DOI
11 Janiak, A.: Kant's Views on Space and Time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2020). https://plato.stanford.edu/archives/spr2020/entries/kantspacetime/
12 OMG.: UML 2.0 Superstructure Specification. Technical report. In: United Modeling Language 2.0 Proposal. Sparx Systems (2004)
13 Al-Fedaghi, S., Haidar E.: Thinging-Based Conceptual Modeling: Case Study of a Tendering System. Journal of Computer Science 16(4), 452-466. DOI: 10.3844/jcssp.2020.452.466   DOI
14 Bergson, H.: Time and Free Will: An Essay on the Immediate Data of Consciousness. George Allen & Unwin, London (1950)
15 Spring, J.M., Hatleback, E.: Thinking About Intrusion Kill Chains as Mechanisms. Journal of Cybersecurity 3(3), 185-197 (2017). DOI: 10.1093/cybsec/tyw012
16 Machamer, P., Darden, L., Craver, C.F.: Thinking About Mechanisms. Philos. Sci. 67(issue), 1-25 (2000)   DOI
17 Wolff, K.E.: Temporal Concept Analysis. In: E. M. Nguifo, V. Duquenne and M. Liquiere (eds.), 2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 91-107. Stanford University, Palo Alto, CA (2001)
18 Zwikael, O., Smyrk, J.: Project Management for the Creation of Organisational Value. In: The Input-Transform-Outcome (ITO) Model of a Project. Springer-Verlag, London (2011). DOI: 10.1007/978-1-84996-516-3_2
19 Russel, N., van der Aalst, W., ter Hofstede, A., Wohed, P.: On the Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In: Proc. of the Third Asia-Pacific Conference on Conceptual Modelling. APCCM (2006)
20 Panjabi, M.: Validation of Mathematical Models. Journal of Biomechanics 12(3), 238 (1979). DOI: 10.1016/0021-9290(79)90148-9   DOI
21 Mayr, H.C., Thalheim, B.: The Triptych of Conceptual Modeling: A Framework for a Better Understanding of Conceptual Modeling. Software and Systems Modeling 20(issue), 7-24 (2021). https://doi.org/10.1007/s10270-020-00836-z   DOI
22 Furia, C.A., Mandrioli, D., Morzenti, A.C., Rossi, M.: Modeling Time in Computing: A Taxonomy and a Comparative Survey. ACM Computing Surveys 6(issue), xx-yy (2010). https://doi.org/10.1145/1667062.1667063   DOI
23 Selic, B.: Using UML for modeling complex real-time systems. In: Mueller F., Bestavros A. (eds.) Languages, Compilers, and Tools for Embedded Systems. LCTES, Lecture Notes in Computer Science, vol. 1474. Springer, Berlin (1998). https://doi.org/10.1007/BFb0057795   DOI
24 Kenny, I.C.: Biomechanical and Modelling Analysis of Shaft Length Effects on Golf Driving Performance. Faculty of Life and Health Sciences of the University of Ulster. Thesis Submitted for the Degree of Doctor of Philosophy, University of Ulster (2006)
25 Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2021). https://plato.stanford.edu/archives/spr2021/entries/concepts/
26 Al-Fedaghi, S.: UML Modeling to TM Modeling and Back. International Journal of Computer Science and Network Security (IJCSNS) 21(1), 84-96 (2021). https://doi.org/10.22937/IJCSNS.2021.21.1.13   DOI
27 Galton, A.: The Ontology of Time and Process. Third Interdisciplinary School on Applied Ontology, Bozen-Bolzano (2016). Accessed Feb. 20, 2021. https://isao2016.inf.unibz.it/wpcontent/uploads/2016/06/bolzano-notes.pdf
28 Wolff K.E., Yameogo W.: Time Dimension, Objects, and Life Tracks. A Conceptual Analysis. In: Ganter B., de Moor A., Lex W. (eds.) Conceptual Structures for Knowledge Creation and Communication. ICCS 2003. LNCS, vol. 2746, pp. 188-200. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-45091-7_13   DOI
29 Boroditsky, L.: Metaphoric Structuring: Understanding Time through Spatial Metaphors. Cognition 75(issue), 1-28 (2000)   DOI
30 Al-Fedaghi, S.: Computer Program Decomposition and Dynamic/Behavioral Modeling. Int. J. Comput. Sci. Netw. 20(8), 152-163 (2020). DOI: 10.22937/IJCSNS.2020.20.08.16   DOI
31 Jorgensen, S.E., Gromiec, M.J.: Conceptual Models. Devel. Environ. Modelling 21(issue), 211-223 (2001)   DOI
32 Theodoulidis, C.I., Loucopoulos, P.: The Time Dimension in Conceptual Modelling. Information Systems 16(3), 273-300 (1991)   DOI