• Title/Summary/Keyword: online resource provisioning

Search Result 3, Processing Time 0.02 seconds

High-revenue Online Provisioning for Virtual Clusters in Multi-tenant Cloud Data Center Network

  • Lu, Shuaibing;Fang, Zhiyi;Wu, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1164-1183
    • /
    • 2019
  • The rapid development of cloud computing and high requirements of operators requires strong support from the underlying Data Center Networks. Therefore, the effectiveness of using resources in the data center networks becomes a point of concern for operators and material for research. In this paper, we discuss the online virtual-cluster provision problem for multiple tenants with an aim to decide when and where the virtual cluster should be placed in a data center network. Our objective is maximizing the total revenue for the data center networks under the constraints. In order to solve this problem, this paper divides it into two parts: online multi-tenancy scheduling and virtual cluster placement. The first part aims to determine the scheduling orders for the multiple tenants, and the second part aims to determine the locations of virtual machines. We first approach the problem by using the variational inequality model and discuss the existence of the optimal solution. After that, we prove that provisioning virtual clusters for a multi-tenant data center network that maximizes revenue is NP-hard. Due to the complexity of this problem, an efficient heuristic algorithm OMS (Online Multi-tenancy Scheduling) is proposed to solve the online multi-tenancy scheduling problem. We further explore the virtual cluster placement problem based on the OMS and propose a novel algorithm during the virtual machine placement. We evaluate our algorithms through a series of simulations, and the simulations results demonstrate that OMS can significantly increase the efficiency and total revenue for the data centers.

Implementation of an open API-based virtual network provisioning automation platform for large-scale data transfer (대용량 데이터 전송을 위한 오픈 API 기반 가상 네트워크 프로비저닝 자동화 플랫폼 구현)

  • Kim, Yong-hwan;Park, Seongjin;Kim, Dongkyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1320-1329
    • /
    • 2022
  • Currently, advanced national research network groups are continuously conducting R&D for the requirement to provide SDN/NFV-based network automation and intelligence technology for R&E users. In addition, the requirement for providing large-scale data transmission with the high performance networking facility, compared to general network environments, is gradually increasing in the advanced national research networks. Accordingly, in this paper, we propose an open API-based virtual network provisioning automation platform for large data transmission researched and developed to respond to the networking requirements of the national research network and present the implementation results. The platform includes the KREONET-S VDN system that provides SDN-based network virtualization technology, and the Kubernetes system that provides container-oriented server virtualization technology, and the Globus Online, a high-performance data transmission system. In this paper, the environment configurations, the system implemetation results for the interworking between the heterogeneous systems, and the automated virtual network provisioning implementation results are presented.

Bandwidth Analysis of Massively Multiplayer Online Games based on Peer-to-Peer and Cloud Computing (P2P와 클라우드 컴퓨팅에 기반한 대규모 멀티플레이어 온라인 게임의 대역폭 분석)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.143-150
    • /
    • 2019
  • Cloud computing has recently become an attractive solution for massively multiplayer online games(MMOGs), as it lifts operators from the burden of buying and maintaining hardware. Peer-to-peer(P2P) -based solutions present several advantages, including the inherent scalability, self-repairing, and natural load distribution capabilities. We propose a hybrid architecture for MMOGs that combines technological advantages of two different paradigms, P2P and cloud computing. An efficient and effective provisioning of resources and mapping of load are mandatory to realize an architecture that scales in economical cost and quality of service to large communities of users. As the number of simultaneous players keeps growing, the hybrid architecture relieves a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the peers. For MMOGs, besides server time, bandwidth costs represent a major expense when renting on-demand resources. Simulation results show that by controlling the amount of cloud and user-provided resource, the proposed hybrid architecture can reduce the bandwidth at the server while utilizing enough bandwidth of players.