• Title/Summary/Keyword: online comment

Search Result 53, Processing Time 0.025 seconds

Are Longer and More Negative Online Reviews More Helpful? - The Mediating Role of Consumers' Perceived Usefulness of Reviews

  • Weiyu Zhang;Xinyue Li;MoonSeop Kim
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.295-311
    • /
    • 2023
  • Purpose - This study investigates how review length and sentiment impact consumers' purchase intentions, using real online reviews as the data source. The study aims to understand how the length and tone of a review affect a potential buyer's decision-making process when considering a purchase. Design/methodology/approach - A 2 (comment length: long vs. short) × 2 (comment sentiment: positive vs. negative) × 2 (product type: practical vs. hedonic) experiment was conducted. Findings - Results indicate that longer reviews have a greater impact on consumers' perceived usefulness compared to short reviews, but do not affect purchase intentions. Review sentiment is found to have a stronger impact than review length, especially for negative sentiment. The study also suggests that consumers pay more attention to reviews of practical products, and that reviews have less influence on hedonic products. Research implications or Originality - The implications of these findings are relevant for both merchants managing reviews and consumers reviewing products.The results of this research could help businesses and marketers optimize their online review strategies to maximize their impact on consumer behavior.

User Characterization from Replying Comment Structures in Online Discussion (온라인 토론의 댓글 응답 구조를 이용한 사용자 특성 분석)

  • Kim, Sung-Hwan;Tak, Haesung;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.135-145
    • /
    • 2018
  • In online communities, users use comments to exchange their opinions and feelings on various subjects. Communication based on comments is quick and convenient, but sometimes this light-weight characteristic makes users use impolite and aggressive words, which leads to an online conflict. Therefore, it is important to analyze and classify users according to their characteristics in order to predict and take action for this kind of troubles. In this paper, we present several quantitative measures for describing the structures of comments trees based on the assumption that the user characteristics be observed as a form of some structural feature in comment trees of articles in which they posted comments. We examine the distribution of the proposed measures over article posters and commenters, and in addition, we show the effectiveness of the presented structural features by conducting experiments to classify users who have received warnings of the administrator from benign users.

Detection of Incivility based on Attention-embedding and multi-channel CNN (어텐션임베딩과 다채널 CNN 기반 반시민성 검출 알고리즘)

  • Park, Youn-Jung;Lee, Se-Young;Keum, Hee-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1880-1889
    • /
    • 2022
  • The online portal platform provides online news with online comments, but the anonymity of comments causes incivility, and online comments are considered social problems. While there are many foreign language-based incivility detection studies, in-depth research is not being conducted in Korea since there has not been implemented Korean language dataset which is labeled detailed criteria of incivility. In this study, the incivility notation of comments was conducted in a total of 13 items, uncivil words were summarized. Furthermore, Attention algorithm was applied to each comment and summary to extract embedding vectors. 2-d CNN followed at the end to detect incivility in given data. As a result, we showed that the proposed algorithm is useful for anti-citizen detection such as name-calling and offensive tones. This study is expected to contribute to the formation of a healthy online comment culture by detecting uncivil comments which hinder democratic discourse.

Design and implementation of malicious comment classification system using graph structure (그래프 구조를 이용한 악성 댓글 분류 시스템 설계 및 구현)

  • Sung, Ji-Suk;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A comment system is essential for communication on the Internet. However, there are also malicious comments such as inappropriate expression of others by exploiting anonymity online. In order to protect users from malicious comments, classification of malicious / normal comments is necessary, and this can be implemented as text classification. Text classification is one of the important topics in natural language processing, and studies using pre-trained models such as BERT and graph structures such as GCN and GAT have been actively conducted. In this study, we implemented a comment classification system using BERT, GCN, and GAT for actual published comments and compared the performance. In this study, the system using the graph-based model showed higher performance than the BERT.

Study on Effective Extraction of New Coined Vocabulary from Political Domain Article and News Comment (정치 도메인에서 신조어휘의 효과적인 추출 및 의미 분석에 대한 연구)

  • Lee, Jihyun;Kim, Jaehong;Cho, Yesung;Lee, Mingu;Choi, Hyebong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • Text mining is one of the useful tools to discover public opinion and perception regarding political issues from big data. It is very common that users of social media express their opinion with newly-coined words such as slang and emoji. However, those new words are not effectively captured by traditional text mining methods that process text data using a language dictionary. In this study, we propose effective methods to extract newly-coined words that connote the political stance and opinion of users. With various text mining techniques, I attempt to discover the context and the political meaning of the new words.

Analysis and Visualization for Comment Messages of Internet Posts (인터넷 게시물의 댓글 분석 및 시각화)

  • Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.45-56
    • /
    • 2009
  • There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

Analyzing the Characteristics of Online News Best Comments (온라인 뉴스 베스트 댓글의 특성 분석)

  • Kim, Jin Woo;Jo, Hye In;Lee, Bong Gyou
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1489-1497
    • /
    • 2018
  • The importance of comments is constantly growing as a participation of individual in Online News that being invigorated. The 'Best Comments', which strongly related by major participants are recognized as a primary public opinion, and obtains the power. Thus this study is aimed to analyze the characteristics of the 'Best Comments' by utilizing the data of comments on Online News. For this study, a possible element that may reveal the difference between 'general' comments and 'best' comments were set up, digitalized the data, and examined the difference between 'general' and 'best' comments. This study is expected to provide a clue for the problematic issues, such as 'online comment rigged scandal' in recent; also as a basic data that subjected by the individual, academic society, government, and etc.

Featured Student Profiles: An Instructional Blogging Strategy to Promote Student Interactions in Online Courses

  • LIM, Taehyeong;DENNEN, Vanessa P.
    • Educational Technology International
    • /
    • v.23 no.1
    • /
    • pp.67-96
    • /
    • 2022
  • Although blogs have been used in online learning environments with optimistic expectations, the distributed nature of blogs can pose some challenges. Currently, we do not have a robust collection of tested blogging strategies to help students interact more effectively with each other when blogs are used as a primary form of engagement in an online class. Thus, the purpose of the study was to test an early iteration of an instructional blogging strategy, "Featured Student Profiles," which is designed to help students become acquainted with each other better and encourage them to visit and comment on each other's blogs. Sixteen pre-service teachers who were enrolled in an online course in which student blogs are the primary medium of peer interactions, participated in the study. Using a design case approach, seven students participated in interviews and all student blog interactions were analyzed. Thematic analysis was applied to analyze the interview data and identify salient themes of students' blogging experiences overall under the study strategy. The findings indicated that students took the most direct and efficient path they experienced to complete the blog task. Their peer interaction patterns varied, but several shifted from random to targeted relationships as the semester progressed. Although all students perceived the strategy as a positive approach to peer awareness, there was no clear evidence of its effect on student interactions.

Finding a Needle in a Haystack: Homophily, Communication Structure, and Information Search in an Online User Community

  • Jeongmin Kim;Soyeon Lee;Yujin Han;Dong-Il Jung
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.635-660
    • /
    • 2024
  • A growing body of research explores how users of online communities navigate through large-scale platforms to find the information they seek. This study builds on the theories of homophily, structural embeddedness, and social exchange to investigate how interest homophily and existing communication structures serve as mechanisms driving information searches and the subsequent formation of communication networks in these communities. Specifically, we analyze comment-on-post tie formation using network data from "Today's House," the largest online user community specializing in interior design in Korea. Employing the LR-QAP method, a permutation-based hypothesis testing algorithm for social network data, our research identifies that network tie formation is driven by both homophilous information searches based on instrumental and hedonic interests, as well as by structurally induced searches such as preferential attachment, reciprocity, and transitivity. In addition, we investigate the contingent effects of communication structure on homophilous tie formation. Our findings suggest that while network-wide structural characteristics enhance homophilous tie formation based on instrumental interests, local network processes leverage homophily based on hedonic interests. We conclude by discussing the theoretical implications of the differential influence of participation motivations on information search patterns and the practical implications for the design of online communities.