Local issues that occur in cities typically garner great attention from the public. While local governments strive to resolve these issues, it is often difficult to effectively eliminate them all, which leads to complaints. In tackling these issues, it is imperative for local governments to use big data to identify the nature of complaints, and proactively provide solutions. This study applies the LDA topic modeling technique to research and analyze trends and patterns in complaints filed online. To this end, 9,625 cases of online complaints submitted to the city of Busan from 2015 to 2017 were analyzed, and 20 topics were identified. From these topics, key topics were singled out, and through analysis of quarterly weighting trends, four "hot" topics(Bus stops, Taxi drivers, Praises, and Administrative handling) and four "cold" topics(CCTV installation, Bus routes, Park facilities including parking, and Festivities issues) were highlighted. The study conducted big data analysis for the identification of trends and patterns in civil affairs and makes an academic impact by encouraging follow-up research. Moreover, the text mining technique used for complaint analysis can be used for other projects requiring big data processing.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.8
/
pp.535-544
/
2018
As the spread of mobile devices equipped with various sensors and high-quality wireless network communications functionsexpands, the amount of spatio-temporal data generated from mobile devices in various service fields is rapidly increasing. In conventional research into processing a large amount of real-time spatio-temporal streams, it is very difficult to apply a Hadoop-based spatial big data system, designed to be a batch processing platform, to a real-time service for spatio-temporal data streams. This paper extends the MapReduce online framework to support real-time query processing for continuous-input, spatio-temporal data streams, and proposes a load management method to distribute overloads for efficient query processing. The proposed scheme shows a dynamic load balancing method for the nodes based on the inflow rate and the load factor of the input data based on the space partition. Experiments show that it is possible to support efficient query processing by distributing the spatial data stream in the corresponding area to the shared resources when load management in a specific area is required.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2751-2771
/
2022
In the post covid-19 era, organizations will experience a new environment. Advances in technologies such as AI and big data, and new experiences such as online meetings and lectures, will increase the use of online communication. Businesses will increasingly engage in online-based information sharing, virtual team operations, and online meetings. This study focuses on meeting climate and satisfaction, to improve the performance of online meetings. Existing studies on meeting climate presuppose off-line situations. Offline and online communication methods and meeting formats are different. This paper proposes new climate types to develop an appropriate climate for online-based meetings. To apply these climates in online meetings, a measurement scale was developed and the impact on online meeting satisfaction was verified. As a result of the study, it was found that the creativity-oriented meeting climate was the most important, and relation-oriented and participation-oriented meeting climates also had a significant effect, while the direction-oriented and task-oriented climates were relatively less important. This study develops new variables and measurements for online meeting climates, and explains their importance. Companies will be able to leverage the appropriate climates for online meetings to improve performance.
Purpose - The purpose of this study is to analyze the impact of customer's communication on sales performance in the online market. Research design, data, and methodology - This study uses linear regression analysis to examine the effects of product review characteristics which are the result of customer's communication, on sales performance by using product reviews of online marketplace Amazon. Result - The increase in the number of product reviews positively affected sales performance. An increase in extreme opinions in the product review has a positive effect on sales performance. The product review length has a negative effect on sales performance. Conclusions - This study has shown the online marketplace customers' communication can influence sales performance using product review big data. This study contributed to the theoretical completeness by analyzing all the products of the book category in Amazon online market. This research will complement the theories regard to the customer behavior affecting sales performance. We expect the empirical analysis result will provide empirical help to sellers, online marketplace operators, and customers. In particular, the number of letters in the product may negatively affect sales performance, so sellers need to consider this effect carefully when exposing product reviews.
Purpose: The main aim of this study is to analyze and suggest new online music distribution models targeted to facilitate the development of the Korean Wave (Hallyu) music market in all locations of the world. This study is conducted through a close analysis of the prevailing distribution models, the unique challenges of the K-pop market, and the trends in new technologies. Research design, data and methodology: To address the issue of how the online music distribution market could be domesticated for the Korean music industry, a systematic review of the previous studies was conducted. The use of the PRISMA approach was followed so that an accurate and transparent method for choosing the studies is ensured. Results: According to the investigation of literature analysis, the online distribution strategy may consist of four key plannings as follows, 1. Leveraging Social Media and User-Generated Content Platforms, 2. Embracing Immersive and Interactive Experiences, 3. Fostering Direct-to-Fan Connections and Monetization, 4. Harnessing Artificial Intelligence and Big Data Analytics. Conclusions: Finally, collaboration and strategic partnerships will be vital. The Korean music companies should seek to cooperate with the technology companies, social media platforms, and the global music streaming services so that they can grow their market, acquire new technologies, and to better their online distribution strategies.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.7
/
pp.1083-1091
/
2017
As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.
This study focused on analyzing the contents of social big data produced in the online space, dealing with issues related to food in the community in the context of COVID-19. First, this study analyzed food-related issues that spread through regional websites and online community(cafes) after social distancing was implemented due to COVID-19. Next, this study analyzed the contents of food-related issues that spread through media news, SNS, and portals. As a result, there were more food-related posts on the homepages of other regions compared to the metropolitan areas such as Seoul and Gyeonggi, but in the case of online communities, there were more food-related issues in online communities registered in Seoul and Gyeonggi regions. Food-related keywords in regional online communities mainly contained content related to the local economy. In the media articles, SNS, and search portal issues, content that can be discussed in the consumption process of local community food-related policies, information, and products mainly appeared. Based on the results of the study, it was found that there is no specialized information sharing system for each community, that online communities can contribute to providing food information applicable to reality, and that it is possible to verify the performance of regional food policies through social media.
International journal of advanced smart convergence
/
v.13
no.1
/
pp.108-113
/
2024
The purpose of this study is to analyze user perceptions of tourism platforms through big data. Data were collected from Naver, Daum, and Google as big data analysis channels. Using semantic network analysis with the keyword 'tourism platform,' a total of 29,265 words were collected. The collection period was set for two years, from August 31, 2021, to August 31, 2023. Keywords were analyzed for connected networks using TexTom and Ucinet programs for social network analysis. Keywords perceived by tourism platform users include 'travel,' 'diverse,' 'online,' 'service,' 'tourists,' 'reservation,' 'provision,' and 'region.' CONCOR analysis revealed four groups: 'platform information,' 'tourism information and products,' 'activation strategies for tourism platforms,' and 'tourism destination market.' This study aims to expand and activate services that meet the needs and preferences of users in the tourism field, as well as platforms tailored to the changing market, based on user perception, current status, and trend data on tourism platforms.
The purpose of this study is to propose a method to utilize Big Data Analysis to find policy issues of local governments in the reality that utilization of big data becomes increasingly important in efficient and effective policy making process. For this purpose, this study analyzed the 180,000 articles of Suwon city for the past three years and identified policy issues and evaluated policy priorities through IPA analysis. The results of this study showed that the analysis of semi-formal big data through newspaper articles is effective in deriving the differentiated policy issues of different local autonomous bodies from the main issues in the nation, In this way, the methodology of finding policy issues through the analysis of big data suggested in this study means that local governments can effectively identify policy issues and effectively identify the people. In addition, the methodology proposed in this study is expected to be applicable to the policy issues through the analysis of various semi - formal and informal big data such as online civil complaint data of the local government, resident SNS.
The study aims to determine which groups leave longer(more active) online reviews(comments) on the film by separating groups, one that satisfied with the movie while the other group dissatisfied with the movie. The data used were rating scores and reviews(comments) from Naver Movie API, and break-even point data provided by Korea Film Commission. We analyzed the relationship between movie rating and review length, before and after movie opening, the characteristics of review length according to the box office, and whether the movie rating affects the review length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.