• Title/Summary/Keyword: online big data

Search Result 382, Processing Time 0.023 seconds

Analysis of the Empirical Effects of Contextual Matching Advertising for Online News

  • Oh, Hyo-Jung;Lee, Chang-Ki;Lee, Chung-Hee
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.292-295
    • /
    • 2012
  • Beyond the simple keyword matching methods in contextual advertising, we propose a rich contextual matching (CM) model adopting a classification method for topic targeting and a query expansion method for semantic ad matching. This letter reports on an investigation into the empirical effects of the CM model by comparing the click-through rates (CTRs) of two practical online news advertising systems. Based on the evaluation results from over 100 million impressions, we prove that the average CTR of our proposed model outperforms that of a traditional model.

Analysis of Sales Volume by Products According to Temperature Change Using Big Data Analysis (빅데이터 분석을 통한 기온 변화에 따른 상품의 판매량 분석)

  • Hong, Jun-Ki
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.85-91
    • /
    • 2019
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Thus, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'B'. According to the analytic results, the proposed big data analysis algorithm found both expected and unexpected changes in sales volume depending on the characteristics of the fashion goods.

  • PDF

Establishment of Marketing Strategy for Online Shopping Mall through Customer Cluster Analysis (소비자 군집분석을 통한 온라인 쇼핑몰 마케팅 전략 수립)

  • Seonghye Kim;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.163-173
    • /
    • 2024
  • This study aims to establish an online shopping mall marketing strategy based on big data analysis methods. The customer cluster analysis method was utilized to analyze customer purchase patterns and segment them into customer groups with similar characteristics. Data was collected from orders placed over one year in 2023 at 'Jeonbuk Saengsaeng Market', the official online shopping mall for agricultural, fish, and livestock products of Jeonbuk Special Self-Governing Province. K-means clustering was conducted by creating variables such as 'TotalPrice' and 'ElapsedDays' for analysis. The study identified four customer groups, and their main characteristics. Furthermore, regions corresponding to customer groups were analyzed using pivot tables. This facilitated the proposal of a marketing strategy tailored to each group's characteristics and the establishment of an efficient online shopping mall marketing strategy. This study is significant as it departs from the traditional reliance on the intuition of the person in charge to operate a shopping mall, instead establishing a shopping mall marketing strategy through objective and scientific big data analysis. The implementation of the marketing strategy outlined in this study is expected to enhance customer satisfaction and boost sales.

Support vector machines for big data analysis (빅 데이터 분석을 위한 지지벡터기계)

  • Choi, Hosik;Park, Hye Won;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.989-998
    • /
    • 2013
  • We cannot analyze big data, which attracts recent attentions in industry and academy, by batch processing algorithms developed in data mining because big data, by definition, cannot be uploaded and processed in the memory of a single system. So an imminent issue is to develop various leaning algorithms so that they can be applied to big data. In this paper, we review various algorithms for support vector machines in the literature. Particularly, we introduce online type and parallel processing algorithms that are expected to be useful in big data classifications and compare the strengths, the weaknesses and the performances of those algorithms through simulations for linear classification.

An Empirical Study of People's Perceptions and Attitudes Toward Personal Information Disclosure Online Focusing on 'Psychological Reactance' in the Big Data Age (온라인상의 개인정보 노출에 대한 인식과 보호 태도 연구 빅데이터 시대 개인정보 노출에 대한 심리적 반발에 주목하며)

  • Kim, Hyoung Jee;Jeon, Eun Sik;Kim, Sung Tae
    • Korean journal of communication and information
    • /
    • v.80
    • /
    • pp.143-166
    • /
    • 2016
  • Recently, industrial values of big data as an important force of future society have been vastly paid attention. At the same time, more concerns about their private informations' disclosure online still echo around us, especially for them who have experiences of their personal information open online. This study aims to examine the questions; how people think about their personal information revealed online?; how much they have 'psychological reactance'?; what attitudes they have toward a certain governmental regulations on this? The findings of this study indicate that we should have more attentions to protect 'privacy' in the age of big-data and still need to make a lot of efforts to prepare a feasible regulation guide on this issue.

  • PDF

BIG DATA ANALYSIS ROLE IN ADVANCING THE VARIOUS ACTIVITIES OF DIGITAL LIBRARIES: TAIBAH UNIVERSITY CASE STUDY- SAUDI ARABIA

  • Alotaibi, Saqar Moisan F
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.297-307
    • /
    • 2021
  • In the vibrant environment, documentation and managing systems are maintained autonomously through education foundations, book materials and libraries at the same time as information are not voluntarily accessible in a centralized location. At the moment Libraries are providing online resources and services for education activities. Moreover, libraries are applying outlets of social media such as Facebook as well as Instagrams to preview their services and procedures. Librarians with the assistance of promising tools and technology like analytics software are capable to accumulate more online information, analyse them for incorporating worth to their services. Thus Libraries can employ big data to construct enhanced decisions concerning collection developments, updating public spaces and tracking the purpose of library book materials. Big data is being produced due to library digitations and this has forced restrictions to academicians, researchers and policy creator's efforts in enhancing the quality and effectiveness. Accordingly, helping the library clients with research articles and book materials that are in line with the users interest is a big challenge and dispute based on Taibah university in Saudi Arabia. The issues of this domain brings the numerous sources of data from various institutions and sources into single place in real time which can be time consuming. The most important aim is to reduce the time that lapses among the authentic book reading and searching the specific study material.

Incidence of Online Public Opinion on Guangzhou Simultaneous Renting and Purchasing Policy - A data mining application

  • Wang, Yancheng;Li, Haixian
    • Asian Journal for Public Opinion Research
    • /
    • v.5 no.4
    • /
    • pp.266-284
    • /
    • 2018
  • This paper adopts the big data research method, and draws 491 data from the Tianya Forum about the Simultaneous Renting and Purchasing policy of Guangzhou. The qualitative analysis software Nvivo11 is used to cluster the main questions about the Simultaneous Renting and Purchasing policy in the forum. The 36 high-frequency word frequencies are obtained through text clustering. Through rooted theory analysis, the main driving factors for summarizing people's doubts are 9 main categories, 3 core categories, and the model of driving factors for online forums is established. The study finds that resource factors are the most key factor, economic factors are the important drivers, and policy guiding factors are sub-important drivers.

Determinants of Online Review Helpfulness for Korean Skincare Products in Online Retailing

  • OH, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.18 no.10
    • /
    • pp.65-75
    • /
    • 2020
  • Purpose: This study aims to examine how to review contents of experiential and utilitarian products (e.g., skincare products) and how to affect review helpfulness by applying natural language processing techniques. Research design, data, and methodology: This study uses 69,633 online reviews generated for the products registered at Amazon.com by 13 Korean cosmetic firms. The authors identify key topics that emerge about consumers' use of skincare products such as skin type and skin trouble, by applying bigram analysis. The review content variables are included in the review helpfulness model, including other important determinants. Results: The estimation results support the positive effect of review extremity and content on the helpfulness. In particular, the reviewer's skin type information was recognized as highly useful when presented together as a basis for high-rated reviews. Moreover, the content related to skin issues positively affects review helpfulness. Conclusions: The positive relationship between extreme reviews and helpfulness of reviews challenges the findings from prior literature. This result implies that an in-depth study of the effect of product types on review helpfulness is needed. Furthermore, a positive effect of review content on helpfulness suggests that applying big data analytics can provide meaningful customer insights in the online retail industry.

A Study on Trends Related to Boryeong Mud Festival Using Tourism Big Data Analysis (관광 빅데이터 분석을 활용한 보령머드축제 관련 동향 탐색 연구)

  • Han Jangheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.165-175
    • /
    • 2023
  • Boryeong Mud Festival has become a representative local festival that both domestic and foreign tourists can enjoy together. In addition, it is one of the usual hands-on marine festivals in Korea that can be enjoyed with one mind at the Boryeong Mud Festival, regardless of race, age, and language. This study explored the overall perception and trends of the Boryeong Mud Festival using big data extracted online from the Boryeong Mud Festival. First, keywords such as Chungnam, hosting, summer, reporter, experience, opening ceremony, performance, operation, news, tourist, opening, event, and festival were frequently exposed online. Second, due to centrality analysis, the centrality of festival experience programs and performances, opening ceremonies, and Boryeong mayor was high. Third, due to the CONCOR analysis, five clusters of meaningful keywords related to the Boryeong Mud Festival were formed.

Recent Trends in the Application of Extreme Learning Machines for Online Time Series Data (온라인 시계열 자료를 위한 익스트림 러닝머신 적용의 최근 동향)

  • YeoChang Yoon
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.15-25
    • /
    • 2023
  • Extreme learning machines (ELMs) are a major analytical method in various prediction fields. ELMs can accurately predict even if the data contains noise or is nonlinear by learning the complex patterns of time series data through optimal learning. This study presents the recent trends of machine learning models that are mainly studied as tools for analyzing online time series data, along with the application characteristics using existing algorithms. In order to efficiently learn large-scale online data that is continuously and explosively generated, it is necessary to have a learning technology that can perform well even in properties that can evolve in various ways. Therefore, this study examines a comprehensive overview of the latest machine learning models applied to big data in the field of time series prediction, discusses the general characteristics of the latest models that learn online data, which is one of the major challenges of machine learning for big data, and how efficiently they can learn and use online time series data for prediction, and proposes alternatives.