• Title/Summary/Keyword: online big data

Search Result 382, Processing Time 0.023 seconds

Developing Graphic Interface for Efficient Online Searching and Analysis of Graph-Structured Bibliographic Big Data (그래프 구조를 갖는 서지 빅데이터의 효율적인 온라인 탐색 및 분석을 지원하는 그래픽 인터페이스 개발)

  • You, Youngseok;Park, Beomjun;Jo, Sunhwa;Lee, Suan;Kim, Jinho
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.77-88
    • /
    • 2020
  • Recently, many researches habe been done to organize and analyze various complex relationships in real world, represented in the form of graphs. In particular, the computer field literature data system, such as DBLP, is a representative graph data in which can be composed of papers, their authors, and citation among papers. Becasue graph data is very complex in storage structure and expression, it is very difficult task to search, analysis, and visualize a large size of bibliographic big data. In this paper, we develop a graphic user interface tool, called EEUM, which visualizes bibliographic big data in the form of graphs. EEUM provides the features to browse bibliographic big data according to the connected graph structure by visually displaying graph data, and implements search, management and analysis of the bibliographc big data. It also shows that EEUM can be conveniently used to search, explore, and analyze by applying EEUM to the bibliographic graph big data provided by DBLP. Through EEUM, you can easily find influential authors or papers in every research fields, and conveniently use it as a search and analysis tool for complex bibliographc big data, such as giving you a glimpse of all the relationships between several authors and papers.

The Mediating Effect of Brand Awareness on the Relationship between Online Shopping Mall Quality Factors and Consumer Satisfaction

  • Jongwoo LEE;Eikjoe KIM
    • Journal of Distribution Science
    • /
    • v.21 no.7
    • /
    • pp.11-20
    • /
    • 2023
  • Purpose: The development of e-commerce in the marketplace is becoming a big trend, but there is a handful of research about the unique characteristics of e-commerce. Online distribution has several differences from offline, such as consumer approach, payment, and product assortment. In addition to the relationship between quality factors and e-commerce satisfaction, this study research how brand awareness affects consumer satisfaction and which quality factor affects brand awareness. Research design, data, and methodology: This study conducted a survey on 457 customers using top online shopping malls. As for the analysis method, multiple regression analysis to verify the mediating effect. Results: All quality factors and brand awareness affect consumer satisfaction. Among the quality factors, only price, payment, and delivery had an effect among the four factors. As a result of verifying the mediating effect of brand awareness in the relationship between online shopping mall quality factors and consumer satisfaction, price, payment, and delivery showed mediating effects. Conclusion: Online shopping mall satisfaction affects the satisfaction of brand awareness consumers perceive aside from consumers' direct experience. The result showed that price, payment, and delivery were significant in the relationship of quality factor and brand awareness of an online shopping malls.

A Study on Perception of Educational Big Data Utilization and Current State of Data Utilization of Officials of the Provicial Office of Education (교육청 공무원의 데이터 활용실태 및 교육 빅데이터 활용에 관한 인식 연구 - A도교육청을 중심으로)

  • Shin, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.18 no.9
    • /
    • pp.39-47
    • /
    • 2020
  • This study was conducted with the aim of investigating the actual state of data utilization and the perception of big data utilization by officials of the provincial Office of Education and to derive implications for the establishment of strategies for big data utilization. An online survey of 440 people was conducted. As a result, the types and sources of data used for work varied, and data collection and refining were the most difficult parts. The infrastructure for data utilization was insufficient and the most necessary factor. The purpose of big data utilization was related to the establishment of educational policy agenda.

Effects of Online Engagement on Uses of Digital Paid Contents (온라인 관여가 디지털 유료 콘텐츠 이용에 미치는 영향)

  • Yang, JungAe;Song, Indeok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.468-481
    • /
    • 2018
  • This study aims to empirically investigate how users' online engagement behaviors predict their uses of paid contents. To this end, the data from the 2016 Korean Media Panel Survey, which has been conducted annually by the Korea Information Society Development Institute(KISDI), were analyzed. Major findings(N=8.313) were as follows. First, the active type of online engagement(e.g., posting, commenting), which contributes to direct creation of online contents, was the most powerful predictor to explain the DV. On the other hand, relatively passive actions of user engagement(e.g., sharing, endorsing, voting) turned out to have no significant effects on the uses of paid contents, just as personality traits and online privacy concerns did. Based on these results, it is recommended that online contents or platform service providers should try to establish clearly-targeted marketing strategies, after thoroughly collecting and analyzing the data of users' various online behaviors.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

Analyzing User Feedback on a Fan Community Platform 'Weverse': A Text Mining Approach

  • Thi Thao Van Ho;Mi Jin Noh;Yu Na Lee;Yang Sok Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.62-71
    • /
    • 2024
  • This study applies topic modeling to uncover user experience and app issues expressed in users' online reviews of a fan community platform, Weverse on Google Play Store. It allows us to identify the features which need to be improved to enhance user experience or need to be maintained and leveraged to attract more users. Therefore, we collect 88,068 first-level English online reviews of Weverse on Google Play Store with Google-Play-Scraper tool. After the initial preprocessing step, a dataset of 31,861 online reviews is analyzed using Latent Dirichlet Allocation (LDA) topic modeling with Gensim library in Python. There are 5 topics explored in this study which highlight significant issues such as network connection error, delayed notification, and incorrect translation. Besides, the result revealed the app's effectiveness in fostering not only interaction between fans and artists but also fans' mutual relationships. Consequently, the business can strengthen user engagement and loyalty by addressing the identified drawbacks and leveraging the platform for user communication.

A Study of Factors Influencing Helpfulness of Game Reviews: Analyzing STEAM Game Review Data (게임 유용성 평가에 미치는 요인에 관한 연구: 스팀(STEAM) 게임 리뷰데이터 분석)

  • Kang, Ha-Na;Yong, Hye-Ryeon;Hwang, Hyun-Seok
    • Journal of Korea Game Society
    • /
    • v.17 no.3
    • /
    • pp.33-44
    • /
    • 2017
  • With the development of the Internet environment, various types of online reviews are being generated and exchanged among consumers to share their opinions. In line with this trend, companies are making efforts to analyze online reviews and use the results in various business activities such as marketing, sales, and product development. However, research on online review in industry related to 'Video Game' which is representative experience goods has not been performed enough. Therefore, this study analyzed STEAM community review data using machine learning techniques. We analyzed the factors affecting the opinion of other users' game review. We also propose managerial implications to incease user loyalty and usability.

Distribution of Brand Community in University: A Systematic Review of Literature on Higher Education Market-Oriented Strategy

  • Danial, THAIB;Saiful, GHOZI;Hendra, SANJAYA KUSNO;Andriani, KUSUMAWATI;Edy, YULIANTO
    • Journal of Distribution Science
    • /
    • v.21 no.3
    • /
    • pp.25-36
    • /
    • 2023
  • Purpose: Brand community in higher education institutions comes up as an important topic to be discussed because the relationships among consumers can support the institutional brand and ultimately give meaning and vitality to the market-oriented strategy. This study aims to investigate how the literature on brand community in higher education have been distributed in research trends, theoretical frameworks, and methods. Research design, data and methodology: A total of 24 articles were organized from four reputable international databases. Content analysis were performed followed by synthesis toward potential directions and suggestions. Results: The researches in this area have increasingly focused on online interaction. Social identity theory and relationship theory were the two most prevalent theories used. Since the internet provides any social relationship with a specific relationship to form the brand community, its contextualization in higher education resulted in new concept implementation. Conclusions: The relationship within online participati on has impacted the market-oriented strategy of higher education in searching for ways toward a long-term and enduring bond among students, alumni, institutions and brands. As there is a plenteous prospect of data availability combined with big data analysis technology, the online participation will pique the interest of scholars to conduct further research on it.

A Study on Fashion Startup Ecosystem Trends in Korea Using Big Data Analysis - Focusing on Newspaper Articles in 2012-2022 - (빅데이터 분석을 활용한 우리나라 패션 스타트업 생태계의 추세 연구 - 2012~2022년 신문기사를 중심으로 -)

  • Soojung Lim;Sunjin Hwang
    • Journal of Fashion Business
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • This study divided articles into two time periods, from 2012 to 2022, with the aim of using big data analysis to look at patterns in the ecosystem of fashion start-ups. The research method extracted top keywords based on TF(Term Frequency) and TF-IDF(Term Frequency-Inverse Document Frequency), analyzed the network, and derived centrality values. As a result of comparing the first and second fashion startup ecosystems, elements of policy, support, market, finance, and human capital were derived in the first period. In addition, in the second period, elements of policy, support, market, finance, and culture were derived. In the first period, the fashion startup ecosystem focused on fostering new designer startups by emphasizing support, finance, and human capital factors and focusing on policies. Meanwhile, in the second period, online-based fashion platform startups and fashion tech startups appeared with the support of digital transformation and fulfillment services triggered by COVID-19(Corona Virus Disease 19), private finances were emphasized, and cultural factors were derived along with success stories of fashion startups. This study is meaningful in that it helps in developing strategies for fashion startups to grow into sustainable companies.

A Study on the Perception of Metaverse Fashion Using Big Data Analysis

  • Hosun Lim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2023
  • As changes in social and economic paradigms are accelerating, and non-contact has become the new normal due to the COVID-19 pandemic, metaverse services that build societies in online activities and virtual reality are spreading rapidly. This study analyzes the perception and trend of metaverse fashion using big data. TEXTOM was used to extract metaverse and fashion-related words from Naver and Google and analyze their frequency and importance. Additionally, structural equivalence analysis based on the derived main words was conducted to identify the perception and trend of metaverse fashion. The following results were obtained: First, term frequency(TF) analysis revealed the most frequently appearing words were "metaverse," "fashion," "virtual," "brand," "platform," "digital," "world," "Zepeto," "company," and "game." After analyzing TF-inverse document frequency(TF-IDF), "virtual" was the most important, followed by "brand," "platform," "Zepeto," "digital," "world," "industry," "game," "fashion show," and "industry." "Metaverse" and "fashion" were found to have a high TF but low TF-IDF. Further, words such as "virtual," "brand," "platform," "Zepeto," and "digital" had a higher TF-IDF ranking than TF, indicating that they had high importance in the text. Second, convergence of iterated correlations analysis using UNICET revealed four clusters, classified as "virtual world," "metaverse distribution platform," "fashion contents technology investment," and "metaverse fashion week." Fashion brands are hosting virtual fashion shows and stores on metaverse platforms where the virtual and real worlds coexist, and investment in developing metaverse-related technologies is under way.