• Title/Summary/Keyword: online big data

Search Result 382, Processing Time 0.023 seconds

A Study of Relationship between Dataveillance and Online Privacy Protection Behavior under the Advent of Big Data Environment (빅데이터 환경 형성에 따른 데이터 감시 위협과 온라인 프라이버시 보호 활동의 관계에 대한 연구)

  • Park, Min-Jeong;Chae, Sang-Mi
    • Knowledge Management Research
    • /
    • v.18 no.3
    • /
    • pp.63-80
    • /
    • 2017
  • Big Data environment is established by accumulating vast amounts of data as users continuously share and provide personal information in online environment. Accordingly, the more data is accumulated in online environment, the more data is accessible easily by third parties without users' permissions compared to the past. By utilizing strategies based on data-driven, firms recently make it possible to predict customers' preferences and consuming propensity relatively exactly. This Big Data environment, on the other hand, establishes 'Dataveillance' which means anybody can watch or control users' behaviors by using data itself which is stored online. Main objective of this study is to identify the relationship between Dataveillance and users' online privacy protection behaviors. To achieve it, we first investigate perceived online service efficiency; loss of control on privacy; offline surveillance; necessity of regulation influences on users' perceived threats which is generated by Dataveillance.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

Online Course Evaluation Method by Using Automatic Classification Technology (자동 분류 기술을 활용한 온라인 강의 평가 방법)

  • Lee, Yong-Bae
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.291-300
    • /
    • 2020
  • Although the need for international online courses and the number of online learners has been rapidly increasing, the online class evaluation has been mostly relying on the quantitative survey analysis. So a more objective evaluation method has to be developed to more accurately assess online course satisfaction. This study highlights the benefits of using big data analysis from the bulletin board messages of online learning system as a method to evaluate the online courses. In fact, automatic classification technology is recognized as an important technology among big data analysis techniques. Our team applied this technique to evaluate the online courses. From the delphi analysis results, suggested method was concluded that the evaluation items and classification results are suitable for online course evaluation and applicable in schools or institutions. This study has confirmed that the rapidly accumulating big data analysis technology can be successfully applied to the education sector with the least change. It also diagnosed a meaningful possibility to expand the big data analysis for further application.

Empirical Comparison of the Effects of Online and Offline Recommendation Duration on Purchasing Decisions: Case of Korea Food E-commerce Company

  • Qinglong Li;Jaeho Jeong;Dongeon Kim;Xinzhe Li;Ilyoung Choi;Jaekyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.226-247
    • /
    • 2024
  • Most studies on recommender systems to evaluate recommendation performances focus on offline evaluation methods utilizing past customer transaction records. However, evaluating recommendation performance through real-world stimulation becomes challenging. Moreover, such methods cannot evaluate the duration of the recommendation effect. This study measures the personalized recommendation (stimulus) effect when the product recommendation to customers leads to actual purchases and evaluates the duration of the stimulus personalized recommendation effect leading to purchases. The results revealed a 4.58% improvement in recommendation performance in the online environment compared with that in the offline environment. Furthermore, there is little difference in recommendation performance in offline experiments by period, whereas the recommendation performance declines with time in online experiments.

Offline-to-Online Service and Big Data Analysis for End-to-end Freight Management System

  • Selvaraj, Suganya;Kim, Hanjun;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.377-393
    • /
    • 2020
  • Freight management systems require a new business model for rapid decision making to improve their business processes by dynamically analyzing the previous experience data. Moreover, the amount of data generated by daily business activities to be analyzed for making better decisions is enormous. Online-to-offline or offline-to-online (O2O) is an electronic commerce (e-commerce) model used to combine the online and physical services. Data analysis is usually performed offline. In the present paper, to extend its benefits to online and to efficiently apply the big data analysis to the freight management system, we suggested a system architecture based on O2O services. We analyzed and extracted the useful knowledge from the real-time freight data for the period 2014-2017 aiming at further business development. The proposed system was deemed useful for truck management companies as it allowed dynamically obtaining the big data analysis results based on O2O services, which were used to optimize logistic freight, improve customer services, predict customer expectation, reduce costs and overhead by improving profit margins, and perform load balancing.

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

Enhanced and applicable algorithm for Big-Data by Combining Sparse Auto-Encoder and Load-Balancing, ProGReGA-KF

  • Kim, Hyunah;Kim, Chayoung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.218-223
    • /
    • 2021
  • Pervasive enhancement and required enforcement of the Internet of Things (IoTs) in a distributed massively multiplayer online architecture have effected in massive growth of Big-Data in terms of server over-load. There have been some previous works to overcome the overloading of server works. However, there are lack of considered methods, which is commonly applicable. Therefore, we propose a combing Sparse Auto-Encoder and Load-Balancing, which is ProGReGA for Big-Data of server loads. In the process of Sparse Auto-Encoder, when it comes to selection of the feature-pattern, the less relevant feature-pattern could be eliminated from Big-Data. In relation to Load-Balancing, the alleviated degradation of ProGReGA can take advantage of the less redundant feature-pattern. That means the most relevant of Big-Data representation can work. In the performance evaluation, we can find that the proposed method have become more approachable and stable.

Predicting Selling Price of First Time Product for Online Seller using Big Data Analytics

  • Deora, Sukhvinder Singh;Kaur, Mandeep
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.193-197
    • /
    • 2021
  • Customers are increasingly attracted towards different e-commerce websites and applications for the purchase of products significantly. This is the reason the sellers are moving to different internet based services to sell their products online. The growth of customers in this sector has resulted in the use of big data analytics to understand customers' behavior in predicting the demand of items. It uses a complex process of examining large amount of data to uncover hidden patterns in the information. It is established on the basis of finding correlation between various parameters that are recorded, understanding purchase patterns and applying statistical measures on collected data. This paper is a document of the bottom-up strategy used to manage the selling price of a first-time product for maximizing profit while selling it online. It summarizes how existing customers' expectations can be used to increase the sale of product and attract the attention of the new customer for buying the new product.

Development Problems and Countermeasures of Rural E-Commerce Logistics in the Context of Big Data and Internet of Things

  • Xianfeng Zhu
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.267-274
    • /
    • 2023
  • As the Internet has expanded and the continuous expansion of online shopping in China, many rural areas also have sales outlets. Due to the impact of economic conditions, rural locations have inadequate e-commerce logistical infrastructure, the number of outlets is small, and each other is in a decentralized state. For various reasons, the advancement of rural e-commerce logistics lags far behind that in urban areas. As the Internet of Things with big data grow in popularity, we can create and enhance the assurance system for the booming ecommerce in rural areas by building the support system of rural online shopping platform, and strengthening the joint distribution of logistics terminals based on data mining, so as to encourage the quick and healthy growth of rural online shopping.

How to Identify Customer Needs Based on Big Data and Netnography Analysis (빅데이터와 네트노그라피 분석을 통합한 온라인 커뮤니티 고객 욕구 도출 방안: 천기저귀 온라인 커뮤니티 사례를 중심으로)

  • Soonhwa Park;Sanghyeok Park;Seunghee Oh
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.175-195
    • /
    • 2019
  • This study conducted both big data and netnography analysis to analyze consumer needs and behaviors of online consumer community. Big data analysis is easy to identify correlations, but causality is difficult to identify. To overcome this limitation, we used netnography analysis together. The netnography methodology is excellent for context grasping. However, there is a limit in that it is time and costly to analyze a large amount of data accumulated for a long time. Therefore, in this study, we searched for patterns of overall data through big data analysis and discovered outliers that require netnography analysis, and then performed netnography analysis only before and after outliers. As a result of analysis, the cause of the phenomenon shown through big data analysis could be explained through netnography analysis. In addition, it was able to identify the internal structural changes of the community, which are not easily revealed by big data analysis. Therefore, this study was able to effectively explain much of online consumer behavior that was difficult to understand as well as contextual semantics from the unstructured data missed by big data. The big data-netnography integrated model proposed in this study can be used as a good tool to discover new consumer needs in the online environment.