• Title/Summary/Keyword: one-way concrete slab

검색결과 77건 처리시간 0.024초

유효단면 및 철근비에 따른 일방향 중공슬래브 전단강도 (Shear Strength of One-way Hollow Slab According to Effective Cross Section and Reinforcement Ratio)

  • 석근영;예상민;강주원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.90-98
    • /
    • 2014
  • 철근콘크리트 구조물의 전단거동은 수년간의 많은 연구에도 불구하고, 이론적으로 명확하게 규명하기에 어려운 문제중에 하나이다. 중공 슬래브의 휨강도와 전단강도는 중공부로 인하여 감소되기 때문에, 이에 따른 구조물의 성능을 예측하는 것은 중요한 문제라 할 수 있다. 현재 각국의 중공슬래브 전단설계기준은 실험에 의한 기준식을 제시하고 있다. 따라서 본 연구에서는 철근비에 따른 일방향 중공슬래브 전단강도 산정방법에 관한 연구를 수행하기 위해 실험결과를 분석하고, 전단강도 산정식들을 비교, 분석하였다.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Kaiser Truss를 사용한 일방향 슬래브의 휨 거동에 관한 연구 (An Experimental Study on the Flexural Behavior of Slabs Using Kaiser Truss)

  • 김형근;곽노현;류승곤;이희발;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1994
  • In order to investigate on the behavior of one-way slab with Kaiser. Truss, such as flexural strength, failure mode, and ductile capacity, a total of twenty specimens have been tested and compared with the R.C slab without Kaiser Truss. The major variables are Kaiser Truss intervals(30, 40, 60cm), half slab thickness. Test results showed that support interval of half pc slab can be determined by the flexural strength which causes the concrete crack and there are horizontal cracks between upper concrete and half slab in the connection of the specimen with kaiser truss interval 60cm.

  • PDF

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

SHCC 및 고장력 철근 복합 콘크리트 슬래브의 성능실험 (Performance Experiments of SHCC and High Tensile Reinforced Composite Concrete Slabs)

  • 문형주;조창근
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.43-50
    • /
    • 2017
  • A type of one-way concrete composite slabs made by strain hardening cementitious composites (SHCC) deck combined with high tensile reinforcements was developed and evaluated by four-point slab bending test. The SHCC material was considered to have an high-ductile and strain hardening behavior in tension after cracking. From experimental comparisons with conventional reinforced concrete slab, the proposed SHCC and high tensile reinforced concrete composite slab showed more improved responses both in service and ultimate load capacities as well as in control of crack width and deflection.

중공형성체 재료에 따른 중공슬래브의 휨성능 평가 (Flexural Capacities of Hollow slab with Material properties)

  • 정주홍;김병훈;최현기;이승창;최창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.69-70
    • /
    • 2010
  • 본 연구는 중공 형성체의 재료가 중공 슬래브의 휨 성능에 미치는 영향에 관하여 살펴보기 위하여 실험적 연구를 수행하였다. 중공형성체의 재료를 일반 플라스틱과 유리섬유 보강 플라스틱으로 제작하였으며, 이를 적용한 중공 슬래브의 일방향 휨 성능 평가를 수행하였다. 그리고 이를 통하여, 중공 형성체의 재료가 중공 슬래브에 미치는 영향을 확인하고, 그 성능을 파악하였다.

  • PDF

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석 (Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs)

  • 이승재;박종일;이영학;김희식
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)

  • Basha, Ali;Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.511-527
    • /
    • 2020
  • The main aim of the current research is to investigate the flexural behavior of the reinforced concrete (RC) slabs strengthened with strain hardening cementitious composites (SHCC) experimentally and numerically. Seven RC slabs were prepared and tested under four-points loading test. One un-strengthened slab considered as control specimen while six RC slabs were strengthened with reinforced SHCC layers. The SHCC layers had different reinforcement ratios and different thicknesses. The results showed that the proposed strengthening techniques significantly increased the ultimate failure load and the ductility index up to 25% and 22%, respectively, compared to the control RC slab. Moreover, a three dimensional (3D) finite element model was proposed to analyze the strengthened RC slabs. It was found that the results of the proposed numerical model well agreed with the experimental responses. The validated numerical model used to study many parameters of the SHCC layer such as the reinforcement ratios and the different thicknesses. In addition, steel connectors were suggested to adjoin the concrete/SHCC interface to enhance the flexural performance of the strengthened RC slabs. It was noticed that using the SHCC layer with thickness over 40 mm changed the failure mode from the concrete cover separation to the SHCC layer debonding. Also, the steel connectors prevented the debonding failure pattern and enhanced both the ultimate failure load and the ductility index. Furthermore, a theoretical equation was proposed to predict the ultimate load of the tested RC slabs. The theoretical and experimental ultimate loads are seen to be in fairly good agreement.