본 논문에서는 합성곱 신경망(CNN)에 기반한 프레임 동기 기법을 제안한다. 기존의 프레임 동기 기법은 프리앰블과 수신 신호 사이의 상관을 통해 수신 신호와 프리앰블이 일치하는 지점을 찾는다. 제안하는 기법은 1차원 벡터로 이루어진 상관기 출력 신호를 2차원 행렬로 재구성하며, 이 2차원 행렬을 합성곱 신경망에 입력하고 합성곱 신경망은 프레임 도착 지점을 추정한다. 구체적으로 가산 백색 가우스 잡음(AWGN) 환경에서 무작위로 도착하는 수신 신호를 생성하여 학습 데이터를 만들고, 이 학습 데이터로 합성곱 신경망을 학습시킨다. 컴퓨터 모의실험을 통해 기존의 동기 기법과 제안하는 기법의 프레임 동기 오류 확률을 다양한 신호 대 잡음 비(SNR)에서 비교한다. 모의실험 결과는 제안하는 합성곱 신경망을 이용한 프레임 동기 기법이 기존 기법 대비 약 2dB 우수함을 보인다.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.186-191
/
2023
Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.
본 논문에서는 심층 학습 모델 방법을 이용하여 EPS(Electronic Potential Sensor) 기반의 손동작 신호를 인식하는 시스템을 제안한다. 전기장 기반 센서인 EPS로부터 추출된 신호는 다량의 잡음이 포함되어 있어 이를 제거하는 전처리과정을 거쳐야 한다. 주파수 대역 특징 필터를 이용한 잡음 제거한 후, 신호는 시간에 따른 전압(Voltage) 값만 가지는 1차원적 특징을 지닌다. 2차원 데이터를 입력으로 하여 컨볼루션 연산을 하는 알고리즘에 적합한 형태를 갖추기 위해 신호는 차원 변형을 통해 재구성된다. 재구성된 신호데이터는 여러 계층의 학습 층(layer)을 가지는 심층 학습 기반의 모델을 통해 분류되어 최종 인식된다. 기존 확률 기반 통계적 모델링 알고리즘은 훈련 후 모델을 생성하는 과정에서 초기 파라미터에 결과가 좌우되는 어려움이 있었다. 심층 학습 기반 모델은 학습 층을 쌓아 훈련을 반복하므로 이를 극복할 수 있다. 실험에서, 제안된 심층 학습 기반의 서로 다른 구조를 가지는 컨볼루션 신경망(Convolutional Neural Networks), DBN(Deep Belief Network) 알고리즘과 통계적 모델링 기반의 방법을 이용한 인식 결과의 성능을 비교하였고, 컨볼루션 신경망 알고리즘이 다른 알고리즘에 비해 EPS 동작신호 인식에서 보다 우수한 성능을 나타냄을 보였다.
비간섭 부하 모니터링은 사용자 에너지 소비량의 실시간 모니터링을 통해 가전기기의 사용량 예측 및 분류를 하는 기술로, 최근 에너지 절약의 수단으로 관심이 증가하고 있다. 본 논문에서는 GAF(Gramian angular field) 기반 1차원 시계열 데이터를 2차원 행렬로 변환하는 기법과, 합성곱 신경망(convolutional neural networks)을 결합해 사용자 전력 사용량 데이터로부터 가전기기를 예측하는 시스템을 제안한다. 학습을 위해 공개 가정용 전력 데이터인 REDD(residential energy disaggregation dataset)를 사용하고, GASF(Gramian angular summation field), GADF(Gramian angular difference field)의 분류 정확도를 확인한다. 시뮬레이션 결과, 이중 상태(on/off)를 가지는 가전기기에서 두 모델 모두 97%의 정확도를 보였고, 다중 상태를 가지는 기기에서 GASF는 95%로 GADF보다 3% 높은 정확도를 보임을 확인하였다. 차후 데이터의 량을 증가시키고 모델을 최적화해 정확도와 속도를 개선할 예정이다.
Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.
대역 확장(Bandwidth Extension)이란 채널 용량 부족 혹은 이동통신 기기에 탑재된 코덱의 특성으로 인해 부호화 및 복호화 과정에서 대역 제한(band limited)되거나 손상된 협대역 신호(NB, Narrow Band)를 복원, 확장하여 광대역 신호(WB, Wide Band)로 전환 시켜주는 것을 의미한다. 대역 확장 연구는 주로 음성 신호 위주로 대역 복제(SBR, Spectral Band Replication), IGF(Intelligent Gap Filling)과 같이 고대역을 주파수 영역으로 변환하여 복잡한 특징 추출 과정을 거쳐 이를 바탕으로 사라지거나 손상된 고대역을 복원한다. 본 논문에서는 딥러닝 모델 중 오토인코더(Autoencoder)를 바탕으로 1차원 합성곱 신경망(CNN, Convolutional Neural Network)들의 잔차 연결을 활용하여 복잡한 사전 전처리 과정 없이 일정한 길이의 시간 영역 신호를 입력시켜 대역 확장 시킨 음향 신호를 출력하는 모델을 제안한다. 또한 음성 영역에 제한되지 않는 음악을 포함한 여러 종류의 음원을 포함하는 데이터셋에 훈련시켜도 손상된 고대역을 복원할 수 있음을 확인하였다.
집단으로 사육되는 돼지 농장에서 돼지 소모성 질환의 자동 탐지는 매우 중요한 문제이다. 특히, 밀집된 돈사에서 사육되는 돼지들의 호흡기 질환은 축산 농가의 막대한 경제적 손실을 야기하는 대표적 질병들 중 하나이다. 본 논문에서는 소리 신호 해석에 기반하여 돼지의 호흡기 질환을 조기 탐지 및 식별하는 잡음에도 강인한 시스템을 제안한다. 제안하는 시스템은, 먼저 1차원의 소리 신호를 2차원의 회색조 영상으로 변환한 후, DNS기법으로 질감 특징 정보를 갖는 이미지를 생성한다. 마지막으로, 이를 CNN에 입력함으로써 잡음에도 강인한 돼지 호흡기 질병 탐지 및 식별 시스템을 구현하고자 한다. 실제 국내 돈사에서 취득한 돼지의 발성음을 이용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 제안된 시스템은 경제적인 비용(저가의 소리 센서)과 시스템 정확도(96.0% 정확도)로 다양한 잡음 환경에서도 돼지의 호흡기 질병들을 탐지할 수 있음을 실험적으로 확인하였다. 제안된 시스템은 독자적인 혹은 기존 방법들의 보완책으로 사용될 수 있다.
In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.
Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.
최근 추천 시스템 연구에서는 사용자와 아이템 간 상호 작용을 보다 잘 표현하고자 다양한 딥 러닝 모델을 적용하고 있다. ONCF(Outer product-based Neural Collaborative Filtering)는 사용자와 아이템의 행렬을 외적하고 합성곱 신경망을 거치는 구조로 2차원 상호작용 맵을 제작해 사용자와 아이템 간의 상호 작용을 더욱 잘 포착하고자 한 대표적인 딥러닝 기반 추천시스템이다. 하지만 합성곱 신경망을 이용하는 ONCF는 학습 데이터에 나타나지 않은 분포를 갖는 데이터의 경우 예측성능이 떨어지는 귀납적 편향을 가지는 한계가 있다. 본 연구에서는 먼저 NCF구조에 Transformer에 기반한 ViT(Vision Transformer)를 도입한 방법론을 제안한다. ViT는 NLP분야에서 주로 사용되던 트랜스포머를 이미지 분류에 적용하여 좋은 성과를 거둔 방법으로 귀납적 편향이 합성곱 신경망보다 약해 처음 보는 분포에도 robust한 특징이 있다. 다음으로, ONCF는 사용자와 아이템에 대한 단일 잠재 벡터를 사용하였지만 본 연구에서는 모델이 더욱 다채로운 표현을 학습하고 앙상블 효과도 얻기 위해 잠재 벡터를 여러 개 사용하여 채널을 구성한다. 마지막으로 ONCF와 달리 부가 정보(side information)를 추천에 반영할 수 있는 아키텍처를 제시한다. 단순한 입력 결합 방식을 활용하여 신경망에 부가 정보를 반영하는 기존 연구와 달리 본 연구에서는 독립적인 보조 분류기(auxiliary classifier)를 도입하여 추천 시스템에 부가정보를 보다 효율적으로 반영할 수 있도록 하였다. 결론적으로 본 논문에서는 ViT 의 적용, 임베딩 벡터의 채널화, 부가정보 분류기의 도입을 적용한 새로운 딥러닝 모델을 제안하였으며 실험 결과 ONCF보다 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.