• Title/Summary/Keyword: one axis steering

Search Result 7, Processing Time 0.025 seconds

Analysis of control characteristics for high speed rolling guided missile with one axis steering fin (1축 날개 조종형 고속회전 유도탄의 조정 특성 해석)

  • Chin, Jong-Sok;Lee, Jae-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 1996
  • It is difficult to analyze the high speed rolling missile with the generally used missile body fixed coordinates. In this study, we formulate the dynamic equations of the high speed rolling missile with the principal axis of inertia, and make the analytical model of one axis steering missile using pitch/yaw symmetry and complex summation method. With this model we analyze the control characteristics and propose the design considerations of high speed rolling missile with one axis control fin using PNG law in conjuntion with a seeker signal.

  • PDF

Torque Ripple Reduction of a PM Synchronous Motor for Electric Power Steering using a Low Resolution Position Sensor

  • Cho, Kwan-Yuhl;Lee, Yong-Kyun;Mok, Hyung-Soo;Kim, Hag-Wone;Jun, Byoung-Ho;Cho, Young-Hoon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.709-716
    • /
    • 2010
  • MDPS (motor driven power steering) systems have been widely used in vehicles due to their improved fuel efficiency and steering performance when compared to conventional hydraulic steering. However, the reduction of torque ripples and material cost are important issues. A low resolution position sensor for MDPS is one of the candidates for reducing the material costs. However, it may increases the torque ripple due to the current harmonics caused by low resolution encoder signals. In this paper, the torque ripple caused by the quantized rotor position of the low resolution encoder is analyzed. To reduce the torque ripples caused by the quantization of the encoder signals, the rotor position and the speed are estimated by measuring the frequency of the encoder signals. In addition, the compensating q-axis current is added to the current command so that the 6th order torque harmonic is attenuated. The reduction of torque ripples by applying the estimated rotor position and the compensated q-axis current is verified through experimental results.

Design of the Feedback Controller of Direct Satellite Broadcasting Antenna for Vehicle (이동체용 직접위성방송 수신 안테나의 궤환 제어기 설계)

  • Kim, Ki-Yeoul;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.53-56
    • /
    • 2001
  • In this paper we discuss a direct satellite broadcasting system for vehicle. The proposed satellite-steering algorithm and controller based on it are designed for a communication and broadcasting system which uses the Mugungwha satellite. The Mugungwha satellite that the proposed system should steer is a geostationary orbit device. The satellite-steering algorithm computes azimuth and elevation with reference to a stationary point on earth. This is extended to a real satellite steering algorithm that considers position and attitude. Real moving position and attitude are represented by latitude, longitude, roll, pitch and yaw. To apply these five pieces of information to the reference satellite steering algorithm, we introduce Euler's degree coordinates that express independently the rotation of each axis relative to an axis. There are two ways a basic algorithm of the antenna of a vehicle can track and orient to satellite. One way is a feedback loop method for broadcasting gain, while the other is a feedback loop method for position and attitude of a vehicle. In the present paper, we design a controller of satellite broadcasting system for a vehicle using an algorithm that combines the two methods. We performed a simulation and experiment to prove effectiveness.

  • PDF

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

A Beam Steering Method of the Rotating Scanning Phased Array Antenna (회전 주사식 위상 배열 안테나의 빔 조향 방법)

  • 한동호;염동진;권경일;홍동희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 1996
  • In this paper we proposed a beam steering equation for the planar slotted waveguide array antenna. The tilt angle measured from the rotating axis and the aperture distribution of the antenna were the most important factors for the beam steering. From the equation, we calculated the frequency and phase distribution of the aperture for any desired beam direction. And we developed a high speed control algorithm delivering the phase data to the phase shifters of a one-dimensional phased array antenna. To reduce complexity of the control circuit and the phase delivery time, we proposed the serial phase repeating method. Because of its simplicity, we expect it can be useful for a large 2- dimensional fully phased array antenna.

  • PDF

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF