• Title/Summary/Keyword: oncogenes

Search Result 131, Processing Time 0.026 seconds

Peroxisome Proliferator-Activated Receptor-Gamma Agonist 4-O-Methylhonokiol Induces Apoptosis by Triggering the Intrinsic Apoptosis Pathway and Inhibiting the PI3K/Akt Survival Pathway in SiHa Human Cervical Cancer Cells

  • Hyun, Seungyeon;Kim, Man Sub;Song, Yong Seok;Bak, Yesol;Ham, Sun Young;Lee, Dong Hun;Hong, Jintae;Yoon, Do Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.334-342
    • /
    • 2015
  • 4-O-Methylhonokiol (MH), a bioactive compound derived from Magnolia officinalis, is known to exhibit antitumor effects in various cancer cells. However, the precise mechanism of its anticancer activity in cervical cancer cells has not yet been studied. In this study, we demonstrated that MH induces apoptosis in SiHa cervical cancer cells by enhancing peroxisome proliferator-activated receptor-gamma (PPARγ) activation, followed by inhibition of the PI3K/Akt pathway and intrinsic pathway induction. MH upregulated PPARγ and PTEN expression levels while it decreased p-Akt in the MH-induced apoptotic process, thereby supporting the fact that MH is a PPARγ activator. Additionally, MH decreased the expression of Bcl-2 and Bcl-XL, inducing the intrinsic pathway in MH-treated SiHa cells. Furthermore, MH treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of polyADP ribose polymerase. The expression levels of Fas (CD95) and E6/E7 oncogenes were not altered by MH treatment. Taken together, MH activates PPARγ/PTEN expression and induces apoptosis via suppression of the PI3K/Akt pathway and mitochondria-dependent pathways in SiHa cells. These findings suggest that MH has potential for development as a therapeutic agent for human cervical cancer.

Mutantional analysis of tumor suppressor gene p53 in human oral squamous carcinoma cell line YD-9

  • Min, Ji-Hak;Kim, Do-Kyun;Lee, Moo-Hyung;Bae, Moon-Kyoung;Um, Kyung-Il;Kwak, Hyun-Ho;Park, Bong-Soo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2007
  • Oral squamous carcinoma (OSC) is the most common malignant neoplasm of the oral mucosa. Although the etiology of OSC is not fully understood, accumulated evidences indicate that the activation of proto-oncogenes and the inactivation of tumor suppressor genes underlie the disease development. An OSC cell line, YD-9 was newly established and characterized. However, the mutational analysis of p53 gene was not performed. Thus, in this study, the presence of mutation in the p53 gene was examined by amplification of exon-4 to -8 and subsequent DNA sequencing. Two point mutations were found in exon-4 and -6: A to G, resulting in amino acid change Tyr to Cys in exon-4, and C to G, resulting in amino acid change Gly to Arg in exon-6, respectively. Any mutation was not found in the exon-5, -7 and -8. The presented results would contribute to basic research to understand the biological mechanism of OSC using YD-9 cells.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Effects of p53 Codon 72 and MDM2 SNP309 Polymorphisms on Gastric Cancer Risk among the Iranian Population

  • Moradi, Mohammad-Taher;Salehi, Zivar;Aminian, Keyvan;Yazdanbod, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7413-7417
    • /
    • 2014
  • Background: Development of gastric cancer (GC) is a multistep process that requires alterations in the expression of oncogenes and tumor suppressor genes, occurring over several decades. The p53 tumor suppressor protein is involved in cell-cycle control, apoptosis and DNA repair. One of the most important regulators of p53 is MDM2, which acts as a negative regulator in the p53 pathway. Based on the key role of p53 and MDM2 in tumor suppression, polymorphisms that cause change in their function might affect cancer risk. We therefore elevated associations of the polymorphisms of p53 (R72P) and MDM2 (SNP309) with GC in Iran. Materials and Methods: A total of 104 patients with gastric cancer and 100 controls were recruited. Genomic DNA was extracted from fresh gastric samples. Genotyping of the p53 and MDM2 genes was performed using allele specific PCR (AS-PCR). Results: There was no significant difference between the p53 codon 72 polymorphism distribution in control and patient groups (p=0.54), but the G allele of MDM2 was found to be over-represented in patients (p=0. 01, Odds Ratio=2. 08, 95% Confidence Interval= 1.37-4.34). Conclusions: The p53 R72P seems not to be a potential risk factor for development of GC among Iranian patients, but our data suggest that MDM2 SNP309 might modify the risk related to GC.

Compound HRAS/PIK3CA Mutations in Chinese Patients with Alveolar Rhabdomyosarcomas

  • Liu, Chun-Xia;Li, Xiao-Ying;Li, Cheng-Fang;Chen, Yun-Zhao;Cui, Xiao-Bin;Hu, Jian-Ming;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1771-1774
    • /
    • 2014
  • The rhabdomyosarcoma (RMS) is the most common type of soft tissue tumor in children and adolescents; yet only a few screens for oncogenic mutations have been conducted for RMS. To identify novel mutations and potential therapeutic targets, we conducted a high-throughput Sequenom mass spectrometry-based analysis of 238 known mutations in 19 oncogenes in 17 primary formalin-fixed paraffin-embedded RMS tissue samples and two RMS cell lines. Mutations were detected in 31.6% (6 of 19) of the RMS specimens. Specifically, mutations in the NRAS gene were found in 27.3% (3 of 11) of embryonal RMS cases, while mutations in NRAS, HRAS, and PIK3CA genes were identified in 37.5% (3 of 8) of alveolar RMS (ARMS) cases; moreover, PIK3CA mutations were found in 25% (2 of 8) of ARMS specimens. The results demonstrate that tumor profiling in archival tissue samples is a useful tool for identifying diagnostic markers and potential therapeutic targets and suggests that these HRAS/ PIK3CA mutations play a critical role in the genesis of RMS.

Alteration of Multiple Tumor Suppressor Genes in Head and Neck Squamous Cell Carcinoma (두경부 편평상피세포암에서 종양억제유전자들의 변이)

  • Song Si-Youn;Park Kang-Shik;Bai Chang-Hoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.20 no.2
    • /
    • pp.147-155
    • /
    • 2004
  • Objectives: Head and neck squamous cell carcinoma (HNSCC) is the most common head and neck malignant tumor. The molecular genetic changes involving both oncogenes and tumor suppressor genes are known to be involved in head and neck squamous cell carcinogenesis, but the roles of the known tumor suppressor genes in carcinogenesis are not fully elucidated. The objectives of this study are to demonstrate the genetic alterations including the loss of heterozygosity (LOH) , amplification, and microsatellite instability of known tumor suppressor genes in HNSCC and to evaluate the relationship between genetic alterations of tumor suppressor genes and clinicopathologic features. Materials and Methods: Genetic alterations of 10 micro satellite markers of the 6 known tumor suppressor genes (APC, EXT1, DPC4, p16, FHIT, and PTEN) were analysed by DNA-PCR in paraffin-embedded histologically confirmed HNSCC specimens. Results: The genetic alterations of tumor suppressor genes were found frequently. Among the genetic alterations, LOH was most frequently found one. LOH was found frequently in APC (45.4%), EXT1 (36.4%), DPC4 (54.5%), and p16 (50%), but not found in FHIT. Also, the author found that abnormalities of APC gene was related to cervical lymph node metastasis and recurrence and that abnormalities of EXT1 gene were coexisted with those of APC gene or DPC4 gene. But these coexistences had no correlation with clinical features. Conclusion: These results suggested that APC, EXT1, p16, and DPC4 genes might play important roles and multiple tumor suppressor genes may participate dependently or independently in the carcinogenesis of HNSCC. These results also suggested that APC gene might relate to prognosis.

TRAIL Mediated Signaling in Pancreatic Cancer

  • Nogueira, Daniele Rubert;Yaylim, Ilhan;Aamir, Qurratulain;Kahraman, OzlemTimirci;Fayyaz, Sundas;Naqvi, Syed Kamran-Ul-Hassan;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5977-5982
    • /
    • 2014
  • Research over the years has progressively shown substantial broadening of the tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling landscape. Increasingly it is being realized that pancreatic cancer is a multifaceted and genomically complex disease. Suppression of tumor suppressors, overexpression of oncogenes, epigenetic silencing, and loss of apoptosis are some of the extensively studied underlying mechanisms. Rapidly accumulating in vitro and in vivo evidence has started to shed light on the resistance mechanisms in pancreatic cancer cells. More interestingly a recent research has opened new horizons of miRNA regulation by DR5 in pancreatic cancer cells. It has been shown that DR5 interacts with the core microprocessor components Drosha and DGCR8, thus impairing processing of primary let-7. Xenografting DR5 silenced pancreatic cancer cells in SCID-mice indicated that there was notable suppression of tumor growth. There is a paradigm shift in our current understanding of TRAIL mediated signaling in pancreatic cancer cells that is now adding new layers of concepts into the existing scientific evidence. In this review we have attempted to provide an overview of recent advances in TRAIL mediated signaling in pancreatic cancer as evidenced by findings of in vitro and in vivo analyses. Furthermore, we discuss nanotechnological advances with emphasis on PEG-TRAIL and four-arm PEG cross-linked hyaluronic acid (HA) hydrogels to improve availability of TRAIL at target sites.

MiR-421 Regulates Apoptosis of BGC-823 Gastric Cancer Cells by Targeting Caspase-3

  • Wu, Jian-Hong;Yao, Yong-Liang;Gu, Tao;Wang, Ze-You;Pu, Xiong-Yong;Sun, Wang-Wei;Zhang, Xian;Jiang, Yi-Biao;Wang, Jian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5463-5468
    • /
    • 2014
  • MicroRNAs might act as oncogenes or tumor suppressors in cancer. Recent studies have shown that miR-421 is up-regulated in human gastric cancer. Here, we found that miR-421 was over-expressed in gastric cancer tissues and cell lines. Bioinformatics analysis predicted that the caspase-3 gene was a target of miR-421. Caspase-3 was negatively regulated by miR-421 at the post-transcriptional level. Bax and Bcl-2 were also regulated by miR-421. Moreover, tumor necrosis factor receptor-I and -II, death receptors in the apoptosis pathway, were up-regulated by miR-421. The over-expression of miR-421 promoted gastric cancer cell growth and inhibited apoptosis of the BGC-823 gastric cancer cell line. These observations indicate that miR-421 acts as a tumor promoter by targeting the caspase-3 gene and preventing apoptosis of gastric cancer cells through inhibition of caspase-3 expression. These findings contribute to our understanding of the functions of miR-421 in gastric cancer.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G Variations in Breast Carcinoma

  • Ozen, Filiz;Erdis, Eda;Sik, Ebru;Silan, Fatma;Uludag, Ahmet;Ozdemir, Ozturk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2903-2908
    • /
    • 2013
  • Background: Various oncogenes related to cancer have been extensively studied and several polymorphisms have been found to be associated with breast cancer. The current report outlines analysis of germ-line polymorphisms for C677T, A1298C (MTHFR), Leiden, R2 (FV) and 5G/4G (PAI-1) in Turkish breast cancer patients. We studied 51 cases diagnosed with invasive ductal and operable with lymph node-positive breast cancer and 106 women as a control group. Materials and Methods: Peripheric blood-DNA samples were used for genotyping by StripAssay technique which is based on the reverse-hybridization principle and real-time PCR methods and results were compared statistically. Results: The frequency of the MTHFR gene 677T and 1298A alleles were significantly higher in cancer patients than in the healthy subjects. The T allele frequency in codon 677 was 2.3-fold and C allele frequency was 3.1-fold increased in BC when compared to the control group for the MTHFR gene. Both differences were statistically significant (OR: 2.295, CI: 1.283-4.106), p<0.006 and (OR: 3.131, CI:1.826-5.369), p<0.0001 respectively. The R2 allele frequency of FV gene was 5.1-fold increased in the current BC when compared to the control group and that difference was also statistically significant (OR: 5.133, CI: 1.299-20.28), p<0.02. Conclusions: The present data suggest that germ-line polymorphisms of C677T, C1298A for MTHFR and R2 for FV are associated in breast cancer and may be additional prognostic markers related to breast cancer survival. The results now need to be confirmed in a larger group of patients.